Skip to main content
Log in

Highly Sensitive Surface Plasmon Resonance Sensor Based on Graphene-Coated U-shaped Fiber

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A graphene-coated U-shaped fiber surface plasmon resonance sensor with high refractive index sensitivity is proposed. With the combination of graphene coating and U-shape design, the proposed sensor exhibits a significantly enhanced sensitivity as compared with the conventional Au-based straight fiber surface plasmon resonance sensor. The refractive index sensitivity of 15.52 μm/RIU (refractive index unit) is achieved by coating monolayer graphene on U-shaped fiber with a bent radius of 1.1 cm. A sensitivity enhancement factor of about 5-fold is obtained when compared with the conventional straight fiber surface plasmon resonance sensor with and without monolayer graphene coating. The effect of Au thickness, number of graphene layers, and the bent radius on the sensor performance was investigated. The high sensitivity of the proposed graphene-coated U-shaped fiber surface plasmon resonance sensor makes it a promising candidate for biosensing and chemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest . Sens Actuat B Chem 121(1):158–177

    CAS  Google Scholar 

  2. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    CAS  PubMed  Google Scholar 

  3. Xu Y, Bai P, Zhou X, Akimov Y, Png CE, Ang LK, Knoll W, Wu L (2019) Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv Opt Mater 7(9):1801433

    Google Scholar 

  4. Masson JF (2017) Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sensors 2(1):16–30

    CAS  PubMed  Google Scholar 

  5. Kretschmann E, Raether H (1968) Notizen: radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A 23(12):2135–2136

    CAS  Google Scholar 

  6. Gupta BD, Verma RK (2009) Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J Sens 2009:979691

    Google Scholar 

  7. Slavík R, Homola J, Čtyroký J, Brynda E (2001) Novel spectral fiber optic sensor based on surface plasmon resonance. Sens Actuat B Chem 74(1):106–111

    Google Scholar 

  8. Verma RK, Sharma AK, Gupta B (2008) Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt Commun 281(6):1486–1491

    CAS  Google Scholar 

  9. Kim YC, Peng W, Banerji S, Booksh KS (2005) Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt Lett 30(17):2218–2220

    PubMed  Google Scholar 

  10. Iga M, Seki A, Watanabe K (2004) Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sens Actuat B Chem 101(3):368–372

    CAS  Google Scholar 

  11. Mitsuhiro I, Atsushi S, Kazuhiro W (2005) Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. Sens Actuat B Chem 106(1):363–368

    Google Scholar 

  12. Verma RK, Gupta BD (2008) Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement. J Phys D Appl Phys 41(9):095106

    Google Scholar 

  13. Arcas A, Dutra F, Allil R, Werneck M (2018) Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors. Sensors 18(2):648

    Google Scholar 

  14. Hill EW, Vijayaragahvan A, Novoselov K (2011) Graphene sensors. IEEE Sensors J 11 (12):3161–3170

    CAS  Google Scholar 

  15. Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A (2015) Recent advances in graphene based gas sensors. Sens Actuat B Chem 218:160–183

    CAS  Google Scholar 

  16. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648

    CAS  PubMed  Google Scholar 

  17. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC – Trend Anal Chem 29(9):954–965

    CAS  Google Scholar 

  18. Xu Y, Wu L, Ang LK (2019) MoS2-based highly sensitive near-infrared surface plasmon resonance refractive index sensor. IEEE J Sel Top Quant Electron 25(2):4600307

    Google Scholar 

  19. Xu Y, Hsieh CY, Wu L, Ang LK (2019) Two-dimensional transition metal dichalcogenides mediated long range surface plasmon resonance biosensors. J Phys D Appl Phys 52(6):065101

    Google Scholar 

  20. Xu Y, Ang YS, Wu L, Ang LK (2019) High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomaterials 9 (2):165

    PubMed Central  Google Scholar 

  21. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    CAS  PubMed  Google Scholar 

  22. Keely GP, O’Neill A, Mcevoy N, Peltekis N, Coleman JN, Duesberg GS (2010) Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J Mater Chem 20(36):7864–7869

    Google Scholar 

  23. Du HJ, Ye JS, Zhang JQ, Huang XD, Yu CZ (2010) Graphene nanosheets modified glassy carbon electrode as a highly sensitive and selective voltammetric sensor for Rutin. Electroanalysis 22 (20):2399–2406

    CAS  Google Scholar 

  24. Wei W, Nong J, Zhu Y, Zhang G, Wang N, Luo SQ, Chen N, Lan GL, Chuang CJ, Huang Y (2018) Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor. Plasmonics 13(2):483–491

    CAS  Google Scholar 

  25. Fu H, Zhang S, Chen H, Weng J (2015) Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sensors J 15(10):5478–5482

    CAS  Google Scholar 

  26. Mishra AK, Mishra SK, Verma RK (2016) Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J Phys Chem C 120(5):2893–2900

    CAS  Google Scholar 

  27. Song B, Li D, Qi WP, Elstner M, Fan CH, Fang HP (2010) Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. ChemPhysChem 11(3):585–589

    CAS  PubMed  Google Scholar 

  28. Jonas B, Felix H, Carlos-Andres P, Paolo S, Marco C, Mats P (2010) Adsorption of aromatic and anti-aromatic systems on graphene through ππ stacking. J Phys Chem Lett 1(23):3407–3412

    Google Scholar 

  29. Celine J, Rita G, Ana F, Armando D, Teresa RS (2017) Graphene based sensors and biosensors. TrAC – Trends Analyt Chem 91:53–66

    Google Scholar 

  30. Cao GY, Gan XS, Lin H, Jia BH (2018) An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron Adv 1:180012

    Google Scholar 

  31. Gao SS, Qiu HW, Zhang C, Jiang SZ, Li Z, Liu XY, Yue WW, Yang C, Huo YY, Feng DJ, Li HS (2016) Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection. RSC Adv 6(19):15808–15815

    CAS  Google Scholar 

  32. Arasu PT, Noor ASM, Shabaneh AA, Yaacob MH, Lim HN, Mahdi MA (2016) Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer. Opt Commun 380:260–266

    CAS  Google Scholar 

  33. Sridevi S, Vasu KS, Bhat N, Asokan S, Sood AK (2016) Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings. Sens Actuat B Chem 223:481–486

    CAS  Google Scholar 

  34. Chuang K, Rani A, Lee JE, Kim JE, Kim Y, Yang H, Kim SO, Kim D, Kim DH (2015) Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues. ACS Appl Mater Inter 7(1):144–151

    Google Scholar 

  35. Nemati A, Wang Q, Hong MH, Teng JH (2018) Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1:180009

    Google Scholar 

  36. Zhou HJ, Cao X, Jiang M, Bao SH, Jin P (2014) Surface plasmon resonance tunability in VO2/Au/VO2 thermochromic structure. Laser Photonics Rev 8(4):617–625

    CAS  Google Scholar 

  37. Madaras SE, Creeden J, Kittiwatanakul S, Lu J, Novikova I, Lukaszew RA (2018) Insulator to metal transition induced by surface plasmon polaritons in VO2/Au thin films. Opt Express 26(20):25657–25666

    CAS  PubMed  Google Scholar 

  38. Zhang C, Li Z, Jiang SZ, Li CH, Xu SC, Yu J, Li Z, Wang MH, Liu AH, Man BY (2017) U-bent fiber optic SPR sensor based on graphene/AgNPs. Sens Actuat B Chem 251:127–133

    CAS  Google Scholar 

  39. Li Z, Zhang C, Han Y, Gao S, Sheng Y, Zhang S, Lu Z, Man B, Jiao Y, Jiang S (2017) Evanescent wave absorption sensor with direct-growth MoS2 film based on U-bent tapered multimode fiber. J Phys D Appl Phys 50(31):315302

    Google Scholar 

  40. Zhang S, Zhao Y, Zhang C, Jiang S, Yang C, Xiu X, Li C, Li Z, Zhao X, Man B (2018) In-situ growth of AuNPs on WS2 U-bent optical fiber for evanescent wave absorption sensor. Appl Surf Sci 441:1072–1078

    CAS  Google Scholar 

  41. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94(3):031901

    Google Scholar 

  42. Durana G, Zubia J, Arrue J, Aldabaldetreku G, Mateo J (2003) Dependence of bending losses on cladding thickness in plastic optical fibers. Appl Opt 42(6):997–1002

    PubMed  Google Scholar 

  43. Pockrand I (1978) Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf Sci 72(3):577–588

    CAS  Google Scholar 

Download references

Funding

This work was partly supported by the Shanghai Municipal Commission of Science and Technology, China (Grant No. 16ZR1411600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying He or Yi Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., He, Y., Yang, Y. et al. Highly Sensitive Surface Plasmon Resonance Sensor Based on Graphene-Coated U-shaped Fiber. Plasmonics 16, 205–213 (2021). https://doi.org/10.1007/s11468-020-01264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01264-x

Keywords

Navigation