Skip to main content
Log in

Metal Nanowire Assisted Hollow Core Fiber Sensor for an Efficient Detection of Small Refractive Index Change of Measurand Liquid

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, a cost-effective hollow core fiber (HCF)-based refractive index (RI) sensor using surface plasmon resonance (SPR) is designed and demonstrated. The sensor consists of a metal nanowire inside an HCF along with the sensing medium of various refractive indices. SPR effect between polaritons and the guided core mode of designed HCF is exploited to enhance the sensing performance. A full vectorial finite element method (FEM) is used for the design and analyses of the sensing probes which exhibit very high sensitivities of 12,400 nm/RIU, 10560 nm/RIU, and 6400 nm/RIU for copper (Cu), gold (Au), and silver (Ag), respectively with a resolution of 1.61 × 10−6 RIU. Additionally, the influence of metal wire dimension is also investigated in this paper. The reported simple and low-cost sensor exhibits high sensitivity for liquid with refractive indices slightly higher than that of the dielectric tube, such as olive oil, turpentine, kerosene, chloroform, carbon tetrachloride, glycerol, and toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gangwar RK, Singh VK (2015) Refractive index sensor based on selectively liquid infiltrated dual core photonic crystal fibers. Photonics Nanostruct Fundam Appl 15:46–52

    Article  Google Scholar 

  2. Miao Y, Liu B, Zhao Q (2009) Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating. Opt Fiber Technol 15(3):233–236

    Article  CAS  Google Scholar 

  3. Chen C, Yang R, Zhang X, Wei W, Guo Q, Zhang X, Qin L, Ning Y, Yu Y (2018) Compact refractive index sensor based on an S-tapered fiber probe. Opt Mater Express 8(4):919–925

    Article  CAS  Google Scholar 

  4. Lu P, Harris J, Wang X, Lin G, Chen L, Bao X (2012) Tapered-fiber-based refractive index sensor at an air/solution interface. Appl Opt 51(30):7368–7373

    Article  CAS  PubMed  Google Scholar 

  5. Mishra AK, Mishra SK, Gupta BD (2015) SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt Commun 344:86–91

    Article  CAS  Google Scholar 

  6. Liu Z, Yang X, Zhang Y, Zhang Y, Zhu Z, Yang X, Zhang J, Yang J, Yuan L (2018) Hollow fiber SPR sensor available for microfluidic chip. Sens Actuator B Chem 265:211–216

    Article  CAS  Google Scholar 

  7. Li X, Nguyen LV, Zhao Y, Ebendorff-Heidepriem H, Warren-Smith SC (2018) High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber. Sens Actuator B-Chem 269:103–109

    Article  CAS  Google Scholar 

  8. Liu Z, Tam H-Y, Htein L, Tse M-LV, Lu C (2017) Microstructured optical fiber sensors. J Light Technol 35(16):3425–3439

    Article  CAS  Google Scholar 

  9. Wang F, Sun Z, Liu C, Sun T, Chu PK (2017) A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 12(6):1847–1853

    Article  Google Scholar 

  10. Liu C, Su W, Wang F, Li X, Liu Q, Mu H, Sun T, Chu PK, Liu B (2018) Birefringent PCF based SPR sensor for a broad range of low refractive index detection. IEEE Photon Technol Lett 30:1471–1474

    Article  CAS  Google Scholar 

  11. Liu C, Yang L, Liu Q, Wang F, Sun Z, Sun T, Mu H, Chu PK (2018) Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection. Plasmonics 13(3):779–784

    Article  CAS  Google Scholar 

  12. Azab MY, Swillam MA, Farahat M, Heikal A, Obayya SAA (2018) Analysis of highly sensitive surface plasmon photonic crystal fiber biosensor. In: Photonic and phononic properties of engineered nanostructures VIII-SPIE, vol. 10541, pp 58

  13. Lee HW, Schmidt MA, Tyagi HK, Sempere LP, St P, Russell J (2008) Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93(11):111102

    Article  Google Scholar 

  14. Csaki A, Jahn F, Latka I, Henkel T, Malsch D, Schneider T, Schröder K, Schuster K, Schwuchow A, Spittel R, Zopf D, Fritzsche W (2010) Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers. Small 6(22):2584–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luan N, Yao J (2016) High refractive index surface plasmon resonance sensor based on a silver wire filled hollow Fiber. IEEE Photonics J. 8(1):1–9

    Google Scholar 

  16. “COMSOL Multiphysics® Modeling Software.” [Online]. Available: https://www.comsol.com/. Accessed 25 Sept 2018

  17. An G, Hao X, Li S, Yan X, Zhang X (2017) D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl Opt 56(24):6988–6992

    Article  CAS  PubMed  Google Scholar 

  18. Dash JN, Das R, Jha R (2018) AZO coated microchannel incorporated PCF-based SPR sensor: a numerical analysis. IEEE Photon Technol Lett 30(11):1032–1035

    Article  CAS  Google Scholar 

  19. Yang X, Lu Y, Duan L, Liu B, Yao J (2017) Temperature sensor based on hollow fiber filled with graphene-Ag composite nanowire and liquid. Plasmonics 12(6):1805–1811

    Article  CAS  Google Scholar 

  20. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  PubMed  Google Scholar 

  21. Rahman BMA, Davies JB (1984) Finite-element analysis of optical and microwave waveguide problems. IEEE Trans Microw Theory Tech 32(1):20–28

    Article  Google Scholar 

  22. Gangwar RK, Singh VK (2017) Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics 12(5):1367–1372

    Article  CAS  Google Scholar 

  23. Lu Y, Hao C, Wu B, Huang X, Wen W, Fu X, Yao J (2012) Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments. Sensors 12(9):12016–12025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang H, Wang E, Xie K, Hu Z (2016) Dual-core photonic crystal fiber for use in fiber filters. IEEE Photonics J 8(2):1–8

    Google Scholar 

  25. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410

    Article  CAS  Google Scholar 

  26. Zhang W, Lian Z, Benson T, Wang X, Lou S (2018) A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt. Opt Quant Electron 50(1):29

    Article  Google Scholar 

  27. Chee S-S, Lee J-H (2014) Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size. J Mater Chem C 2(27):5372–5381

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by City, University of London, under exchange fellowship program conducted by EM Leaders. Authors are also thankful to IIT(ISM), Dhanbad Jharkhand to provide research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pathak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, A.K., Ghosh, S., Gangwar, R.K. et al. Metal Nanowire Assisted Hollow Core Fiber Sensor for an Efficient Detection of Small Refractive Index Change of Measurand Liquid. Plasmonics 14, 1823–1830 (2019). https://doi.org/10.1007/s11468-019-00969-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00969-y

Keywords

Navigation