Skip to main content
Log in

Novel Ridge-Type Gold Film Waveguide for Surface Plasmon Polariton Laser

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon polariton lasers are the basis for photonic circuits, but their losses, thresholds, and some other problems remain thorny issues. In this study, we put forward a novel ridge-type gold film surface plasmon polariton laser. The device adopts a multi-layer hybrid waveguide structure, where the bottom layer is a gold film, and a gold ridge is formed over the center of the gold film. We symmetrically place the two SiO2layers on both sides of the gold ridge as buffer layers and deposit a gold nanoribbon on the top of gold ridge. Two air gaps are formed between the gold ridge and SiO2buffer layers. We numerically study the structure, and the results show that at the operating wavelength of 1550 nm, the effective mode area reaches 1.375 × 10−5λ2 , and the confinement factor reaches 0.75. When the width of the SiO2layer is 2 nm, the height of the ridge is 10 nm, and the angle of the ridge is 80°, the waveguide can effectively enhance the light field confinement so as to limit the energy to a very small range and exhibits the minimum gain threshold. The waveguide can provide a solution for the optical source device of the surface plasma excitation circuits and has great application potential in the ultra-small and high-density optical chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dadoenkova YS, Moiseev SG, Abramov AS et al ( 2017) Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure[J]. Annalen Der Physik 529(5):1700037

  2. Hu ZJ, Tan PS, Zhu SW et al (2010) Structured light for focusing surface plasmon polaritons [J]. Opt Express 18(10):10864–10870

    Article  CAS  PubMed  Google Scholar 

  3. Chen J, Sun C, Li H, Gong Q (2014) Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit. [J]. Nanoscale 6(22):13487–13493

    Article  CAS  PubMed  Google Scholar 

  4. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons [J]. Phys Rep 408(3):131–314

    Article  CAS  Google Scholar 

  5. Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface-plasmon circuitry [J]. Phys Today 61(5):44–50

    Article  Google Scholar 

  6. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. [J]. Nat Mater 9(3):205–213

    Article  CAS  PubMed  Google Scholar 

  7. Shi S, Zhang Z, Du J et al (2012) Surface-plasmon-polaritons-assisted nanolithography with dual-wavelength illumination for high exposure depth [J]. Opt Lett 37(2):247–249

    Article  CAS  PubMed  Google Scholar 

  8. Dong J, Liu J, Liu P, Liu J, Zhao X, Kang G, Xie J, Wang Y (2013) Surface plasmon interference lithography with a surface relief metal grating [J]. Opt Commun 288(5):122–126

    Article  CAS  Google Scholar 

  9. Ryan C, Christenson CW, Valle B et al (2012) Roll‐to‐Roll Fabrication of Multilayer Films for High Capacity Optical Data Storage. Adv Mater 24:5222–5226

  10. Yu ZG, Zhao LX, Wei XC et al (2014) Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer.[J]. Opt Express 22(Suppl 6(21)):A1596

    Article  CAS  PubMed  Google Scholar 

  11. Tian J, Yang R, Song L, Xue W (2014) Optical properties of a Y-splitter based on hybrid multilayer plasmonic waveguide [J]. IEEE J Quantum Electron 50(11):898–903

    Article  CAS  Google Scholar 

  12. Luo LB, Liang RS, Li TL et al (2014) Novel integrated demultiplexer with the Bragg grating structure based on surface plasmon polaritons[C]//Key Engineering Materials. Trans Tech Publications 609:1307–1312

  13. Garcia-Blanco SM, Pollnau M, Bozhevolnyi SI (2012) Theoretical study of loss compensation in long-range dielectric loaded surface plasmon polariton waveguides [J]. Bel Studio 18(22):23009–23015

    Google Scholar 

  14. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit [J]. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  15. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers [J]. Science 292(5523):1897–1899

    Article  CAS  PubMed  Google Scholar 

  16. Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems.[J]. Phys Rev Lett 90(2):027402

    Article  CAS  PubMed  Google Scholar 

  17. Noginov MA, Zhu G, Belgrave AM et al (2009) Demonstration of a spaser-based nanolaser [J]. Nature 460(7259):1110–1112

    Article  CAS  PubMed  Google Scholar 

  18. Smalbrugge B, Ning CZ, Geluk EJ et al (2009) Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Opt Express 17(13):11107

    Article  CAS  PubMed  Google Scholar 

  19. Nezhad MP, Simic A, Bondarenko O et al (2009) Room temperature operation of subwavelength metallo-dielectric lasers [J]. Nat Photonics 4(6):395–399

    Article  CAS  Google Scholar 

  20. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation [J]. Nat Photonics 2(8):496–500

    Article  CAS  Google Scholar 

  21. Sun R, Dong P, Feng NN, Hong CY, Michel J, Lipson M, Kimerling L (2007) Horizontal single and multiple slot waveguides: optical transmission at lambda = 1550 nm [J]. Opt Express 15(26):17967

    Article  CAS  PubMed  Google Scholar 

  22. Bian Y, Gong Q (2014) Multilayer metal–dielectric planar waveguides for subwavelength guiding of long-range hybrid plasmon polaritons at 1550 nm [J]. J Opt 16(1):100–103

    Article  Google Scholar 

  23. J M, Chen L, Li X et al (2013) Hybrid nano ridge plasmonic polaritons waveguides [J]. Appl Phys Lett 103(13):131107–131107

    Article  CAS  Google Scholar 

  24. Liu JT, Xu BZ, Zhang J, Cai LK, Song GF (2012) Gain assisted indented plasmonic waveguide for low-threshold nanolaser applications [J]. Chinese Physics B 21(10):107303

    Article  CAS  Google Scholar 

  25. Lv H, Liu Y, Yu Z et al (2014) Hybrid plasmonic waveguides for low-threshold nanolaser applications[J]. Chin Opt Lett 12(11):103–106

    Google Scholar 

Download references

Funding

This work was supported by supported by the Guangxi Natural Science Foundation (2017GXNSFAA198261), the National Natural Science Foundation of China (Grant No. 61762018), the Guangxi Youth Talent Program (F-KA16016), the Innovation Project of Guangxi Graduate Education XJGY201807), the Guangxi Scholarship Fund of Guangxi Education Department, and the Youth Backbone Teacher Growth Support Plan of Guangxi Normal University (shi zheng personnel (2012) 136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhu, Duqu Wei or Frank Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, J., Zhu, J., Wei, D. et al. Novel Ridge-Type Gold Film Waveguide for Surface Plasmon Polariton Laser. Plasmonics 14, 33–39 (2019). https://doi.org/10.1007/s11468-018-0774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0774-7

Keywords

Navigation