Skip to main content
Log in

A Tunable on-Chip Integrated Plasmonic Filter and Router Based on Metal/Dielectric Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

An on-chip integrated wavelength filter and router device is realized using two-dimensional metal/dielectric nanostructures. The device can filter wavelengths of light from an incident broadband beam, and further route the filtered signals to different ports on the same chip. The footprint of the entire device is only 3.4 μm × 7.3 μm. Both the number of wavelength channels and the central wavelength of each channel can be tuned by adjusting the structure parameters, or by using a pumped laser. This work demonstrates an ultracompact and robust integrated multifunctional device, and provides a novel and flexible method for the integration of nanophotonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caulfield H, Dolev S (2010) Why future supercomputing requires optics. Nat Photon 4(5):261–263

    Article  CAS  Google Scholar 

  2. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(440):508–511. doi:10.1038/nature 04594

    Article  CAS  Google Scholar 

  3. Horie Y, Arbabi A, Arbabi E, Kamali SM, Faraon A (2016) Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures. Opt Express 24(11):11677–11682. doi:10.1364/OE.24.011677

    Article  CAS  Google Scholar 

  4. Fu J, Lian J, Liu R, Gan L, Li Z (2011) Unidirectional channel-drop filter by one-way gyromagnetic photonic crystal waveguides. Appl Phys Lett 98(21):211104. doi:10.1063/1.3593027

    Article  Google Scholar 

  5. Wang P, Zhang Z (2016) Double-filtering method based on two acousto-optic tunable filters for hyperspectral imaging application. Opt Express 24(9):9888–9895. doi:10.1364/OE.24.009888

    Article  CAS  Google Scholar 

  6. Yang X, Hu X, Chai Z, Lu C, Yang H, Gong Q (2014) Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies. Appl Phys Lett 104(22):221114. doi:10.1063/1.4882916

    Article  Google Scholar 

  7. Hayran Z, Turduev M, Botey M, Herrero R, Staliunas K, Kurt H (2016) Numerical and experimental demonstration of a wavelength demultiplexer design by point-defect cavity coupled to a tapered photonic crystal waveguide. Opt Lett 41(1):119–122. doi:10.1364/OL.41.000119

    Article  Google Scholar 

  8. Chen J, Li Z, Li J, Gong Q (2011) Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. Opt Express 19(10):9976–9985. doi:10.1364/OE.19.009976

    Article  CAS  Google Scholar 

  9. Lu C, Liu Y, Hu X, Yang H, Gong Q (2016) Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities. Sci Rep 6:27428. doi:10.1038/srep 27428

    Article  CAS  Google Scholar 

  10. Piggott AY, Lu J, Lagoudakis KG, Petykiewicz J, Babinec TM, Vučković J (2015) Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photon 9(6):374–377. doi:10.1038/nphoton. 2015.69

    Article  CAS  Google Scholar 

  11. Piggott AY, Lu J, Babinec TM, Lagoudakis KG, Petykiewicz J, Vučković J (2014) Inverse design and implementation of a wavelength demultiplexing grating coupler. Sci Rep 4:7210. doi:10.1038/srep07210

    Article  CAS  Google Scholar 

  12. Xu T, Wu Y, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1(5):118–124. doi:10.1038/ncomms1058

    Article  Google Scholar 

  13. Tanemura T, Balram KC, Ly-Gagnon D, Wahl P, White JS, Brongersma ML, Miller DAB (2011) Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. Nano Lett 11(7):2693–2698. doi:10.1021/nl200938h

    Article  CAS  Google Scholar 

  14. Wang C, Yu C (2013) Free-space plasmonic filter with dual-resonance wavelength using asymmetric T-shaped metallic array. Plasmonics 8(8):385–390. doi:10.1007/s11468-012-9402-0

    Article  CAS  Google Scholar 

  15. Li H, Zhai X, Sun B, Huang Z, Wang L (2015) A graphene-based bandwidth-tunable mid-infrared ultra-broadband plasmonic filter. Plasmonics 10(4):765–771. doi:10.1007/s11468-014-9863-4

    Article  CAS  Google Scholar 

  16. Zhang Z, Shi F, Chen Y (2015) Tunable multichannel plasmonic filter based on coupling-induced mode splitting. Plasmonics 10(1):139–144. doi:10.1007/s11468-014-9787-z

    Article  CAS  Google Scholar 

  17. Liu JSQ, Pala RA, Afshinmanesh F, Cai W, Brongersma ML (2011) A submicron plasmonic dichroic splitter. Nat Commun 2:525. doi:10.1038/ncomms1537

    Article  Google Scholar 

  18. Sun C, Chen J, Li H, Gong Q (2015) Ultra-small wavelength splitters in a subwavelength plasmonic waveguide. Opt Lett 40(5):685–688. doi:10.1364/OL.40.000685

    Article  Google Scholar 

  19. Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6(12):4370–4379. doi:10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  20. Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG (2010) Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput Phys Commun 181:687–702. doi:10.1016/j.cpc.2009.11.008

    Article  CAS  Google Scholar 

  21. Wang CM, Chang YC, Tsai DP (2009) Spatial filtering by using cascading plasmonic gratings. Opt Express 17(8):6218–6223. doi:10.1364/OE.17.006218

    Article  CAS  Google Scholar 

  22. Zhu Y, Hu X, Lu C, Huang Y, Gong Q (2012) All-optical tunable wavelength-division multiplexing based on colloidal crystal coated silver film. Plasmonics 7(4):589–594. doi:10.1007/s11468-012-9346-4

    Article  CAS  Google Scholar 

  23. Furumi S, Yokoyama S, Otomo A, Mashiko S (2004) Phototunable photonic bandgap in a chiral liquid crystal laser device. Appl Phys Lett 84(24):2491–2493. doi:10.1063/1.1699445

    Article  CAS  Google Scholar 

  24. Wang B, Wu X, Zhang Y (2013) Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays. Plasmonics 8(4):1535–1541. doi:10.1007/s11468-013-9569-z

    Article  CAS  Google Scholar 

  25. Mokari T, Sztrum CG, Salant A, Rabani E, Banin U (2005) Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat Mater 4(11):855–863. doi:10.1038/nmat1505

    Article  CAS  Google Scholar 

  26. Kuykendall T, Pauzauskie PJ, Zhang Y, Goldberger J, Sirbuly D (2004) Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat Mater 3(8):524–528. doi:10.1038/nmat1177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant 11604378 and 11674390, and the Independent Innovation Project of Qian Xuesen Laboratory of Space Technology. We thank Prof. Naijin Liu at the Qian Xuesen Laboratory of Space Technology for the helpful discussions regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuicui Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Wang, HQ., Miao, J. et al. A Tunable on-Chip Integrated Plasmonic Filter and Router Based on Metal/Dielectric Nanostructures. Plasmonics 13, 115–121 (2018). https://doi.org/10.1007/s11468-016-0490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0490-0

Keywords

Navigation