Skip to main content
Log in

Plasmonic Directional Couplers Based on Multi-Slit Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose and investigate the performance of the plasmonic directional couplers based on two dimensional multi-slit plasmonic waveguides, employing the finite difference time domain simulation method. The idea behind the directional properties of the directional couplers is the interference of two wave components, in and out of phase, at the coupled and isolated ports, respectively. The coupler is also analyzed by an analytic method. The simulation results comply well with those of the analytic considerations. The effects of variations of the coupler structural parameters, crosstalk between the input and output ports, and the overall structure loss are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kirchain R, Kimerling L (2007) A roadmap for nanophotonics. Nat Photonics 1:303–305

    Article  CAS  Google Scholar 

  2. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics-a route to nanoscale optical devices. Adv Mater 13:1501–1505

    Article  CAS  Google Scholar 

  3. Ozbay E (2006) Plasmonic: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  PubMed  Google Scholar 

  4. Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl DW (1996) Local excitation, scattering, and interference of surface plasmons. Phys Rev Lett 77:1889–1892

    Article  CAS  PubMed  Google Scholar 

  5. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  PubMed  Google Scholar 

  6. Wang V, Plummer EW, Kempa K (2011) Foundations of plasmonics. Adv Phys 60:799–898

    Article  CAS  Google Scholar 

  7. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881

    Article  CAS  Google Scholar 

  8. Heikal AM, Hameed MFO, Obayya SSA (2013) Improved trenched channel plasmonic waveguide. IEEE J Lightwave Technol 31:2184–2191

    Article  CAS  Google Scholar 

  9. Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19:2910–2915

    Article  CAS  PubMed  Google Scholar 

  10. Dolatabady A, Granpayeh N (2012) All optical logic gates based on two dimensional plasmonic waveguide with nanodisk resonator. J Opt Soc Korea 16:432–442

    Article  Google Scholar 

  11. Liyang L, Fei L, Mu X, Tao W, Jiayang W, Linjie Z, Yikai S (2012) Mode-selective hybrid plasmonic Bragg grating reflector. IEEE Photon Technol Lett 24:1765–1767

    Article  Google Scholar 

  12. Huu NN, Cada M, Pistora J, Yasumoto K (2014) Tunable optical filter based on gold and silver double-sided gratings and its application as plasmonic sensor. IEEE J Lightwave Technol 32:4079–4086

    Article  CAS  Google Scholar 

  13. Dolatabady A, Granpayeh N, Foroughi Nezhad V (2013) A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator. Opt Commun 300:265–268

    Article  CAS  Google Scholar 

  14. Mercedes CER, Esquerre VFR, Lima IT, Figueroa HEH (2013) Design and chromatic aberration analysis of plasmonic lenses using the finite element method. IEEE J Lightwave Technol 31:1114–1119

    Article  Google Scholar 

  15. Bahadori M, Eshaghian A, Hodaei H, Rezaei M, Mehrany K (2013) Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model. IEEE Photon Technol Lett 25:784–786

    Article  Google Scholar 

  16. Chang YJ, Li WL (2011) Directional-coupler-based polarization splitting in asymmetric metal/multi-insulator configuration for optical nanocircuitry. IEEE Photon Technol Lett 24:458–460

    Article  CAS  Google Scholar 

  17. Chen WJ, Eaton SM, Zhang H, Herman PR (2008) Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses. Opt Express 16:11470–11480

    Article  PubMed  Google Scholar 

  18. Kim JT (2014) Silicon optical modulators based on tunable plasmonic directional couplers. IEEE J Sel Topics Quantum Electron 21:3300108

    Google Scholar 

  19. Taher Rahmati A, Granpayeh N (2011) Kerr nonlinear switch based on ultra-compact photonic crystal directional coupler. Optik 122:502–505

    Article  CAS  Google Scholar 

  20. Du CH, Chiou YP (2014) Vertical directional couplers with ultra-short coupling length based on hybrid plasmonic waveguides. IEEE J Lightwave Technol 32:2065–2071

    Article  Google Scholar 

  21. Nozhat N, McPhedran RC, de Sterke CM, Granpayeh N (2011) The plasmonic folded directional coupler. Photonics Nanostruct Fundam Appl 9:308–314

    Article  Google Scholar 

  22. Gramotnev DK, Vernon KC, Pile DFP (2008) Directional coupler using gap plasmon waveguides. Appl Phys B 93:99–106

    Article  CAS  Google Scholar 

  23. Nozhat N, Granpayeh N (2012) Switching power reduction in the ultra-compact Kerr nonlinear plasmonic directional coupler. Opt Commun 285:1555–1559

    Article  CAS  Google Scholar 

  24. Pu M, Yao N, Hu C, Xin X, Zhao Z, Wang C, Luo X (2010) Directional coupler and nonlinear Mach-Zehender interferometer based on metal-insulator-metal plasmonic waveguide. Opt Express 18:21030–21037

    Article  CAS  PubMed  Google Scholar 

  25. Chen P, Liang R, Huang Q, Yu Z, Xu X (2011) Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure. Opt Express 19:7633–7639

    Article  CAS  PubMed  Google Scholar 

  26. Degiron A, Cho SY, Tyler T, Jokerst NM, Smith DR (2009) Directional coupling between dielectric and long-range plasmon waveguides. New J Phys 11:015002

    Article  CAS  Google Scholar 

  27. He MD, Gong ZQ, Li S, Luo YF, Liu JQ, Chen X (2011) Plasmonic coupler based on the nanoslit with bump. Opt Commun 284:368–372

    Article  CAS  Google Scholar 

  28. Pozar DM (2005) Microwave engineering. Wiley, New Jersey

    Google Scholar 

  29. Han Z, Van V, Herman WN, Ho PT (2009) Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. Opt Express 17:12678–12684

    Article  CAS  PubMed  Google Scholar 

  30. Dolatabady A, Granpayeh N (2013) Plasmonic waveguide directional coupler based on two dimensional two-hole coupler. 21st Iranian Conf on Electrical Engineering. doi:10.1109/IranianCEE.2013.6599794

  31. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston

    Google Scholar 

  32. Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18:17922–17927

    Article  CAS  PubMed  Google Scholar 

  33. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  34. Matthaei G, Young L, Jones EMT (1980) Microwave filters, impedance-matching networks, and coupling structures. Artech House, Dedham

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosrat Granpayeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolatabady, A., Granpayeh, N. Plasmonic Directional Couplers Based on Multi-Slit Waveguides. Plasmonics 12, 597–604 (2017). https://doi.org/10.1007/s11468-016-0303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0303-5

Keywords

Navigation