Skip to main content
Log in

All-Optical Surface Plasmonic Universal Logic Gate Devices

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have introduced optically controlled two-stage cascaded surface plasmonic two-mode interference waveguide structure (having silicon core and silver upper and lower cladding) as universal gates. GaAsInP cladding is used in left and right side of core for optical pulse controlled cladding refractive index modulation which controls propagation of excited modes. The universal logic gate operations have been shown with this structure. These universal gates have potential in development of large-scale integrated optical processor due to its compactness and high fabrication tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li Z, Li G (2006) Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photon Technol Lett 18:1341–1343

    Article  CAS  Google Scholar 

  2. Ibrahim TA, Grover R, Kuo LC, Kanakaraju S, Calhoun LC, Ho PT (2003) All-optical AND/NAND logic gates using semiconductor microresonators. IEEE Photon Technol Lett 15:1422–1424

    Article  Google Scholar 

  3. Berrettini G, Simi A, Malacarne A, Bogoni A, Poti L (2006) Ultrafast integrable and reconfigurable XNOR, AND NOR, and NOT photonic logic gate. IEEE Photon Technol Lett 18:917–919

    Article  Google Scholar 

  4. Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M (2011) Design of optical XOR, XNOR, NAND, and OR logic gates based on multi-mode interference waveguides for binary-phase-shift-keyed signal. J Lightw Technol 29:2836–2846

    Article  Google Scholar 

  5. Dimitriadou E, Zoiros KE (2012) On the design of reconfigurable ultrafast all-optical NOR and NAND gates using a single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. J Opt 14:105401

    Article  Google Scholar 

  6. Liu W, Yang D, Shen G, Tian H, Ji Y (2013) On the design of reconfigurable ultrafast all-optical NOR and NAND gates using a single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt Laser Technol 50:55–64

    Article  Google Scholar 

  7. Bao J, Xiao J, Fan L, Li X, Hai Y, Zhang T, Yang C (2014) All-optical NOR and NAND gates based on photonic crystal ring resonator. Opt Commun 329:109–112

    Article  CAS  Google Scholar 

  8. Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas NJ, Xu H (2010) Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett 11:471–475

    Article  Google Scholar 

  9. Wei H, Wang Z, Tian X, Käll M, Xu H (2011) Cascaded logic gates in nanophotonic plasmon networks. Nat Commun 2:387

    Article  Google Scholar 

  10. Pan D, Wei H, Xu H (2013) Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt Express 21:9556–9562

    Article  Google Scholar 

  11. Zhao W, Ju D, Jiang Y (2015) Pulse controlled all-optical logic gate based on nonlinear ring resonator realizing all fundamental logic operations. Plasmonics 10:311–317

    Article  Google Scholar 

  12. Bozhevolnyi SI, Erland J, Leosson K, Skovgaard PM, Hvam JM (2001) Waveguiding in surface plasmon polariton band gap structures. Phys Rev Lett 86:3008

    Article  CAS  Google Scholar 

  13. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404

    Article  Google Scholar 

  14. Gogoi N, Sahu PP (2015) All-optical compact surface plasmonic two-mode interference device for optical logic gate operation. Appl Opt 54:1051–1057

    Article  CAS  Google Scholar 

  15. Grant RS, Sibbett W (1991) Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier. Appl Phys Lett 58:1119–1121

    Article  CAS  Google Scholar 

  16. Malyarevich AM, Yumashev KV, Lipovskii AA (2008) Semiconductor doped glass saturable absorbers for near-infrared solid-state lasers. J Appl Phys 103:081301

    Article  Google Scholar 

  17. Sahu PP (2007) Compact multimode interference coupler with tapered waveguide geometry. Opt Commun 277:295–301

    Article  CAS  Google Scholar 

  18. Sahu PP (2015) Optical pulse controlled two mode interference coupler based logic gates. Optik 126:404–407

    Article  Google Scholar 

  19. Chamanzar M, Soltani M, Momeni B, Yegnanarayanan S, Adibi A (2010) Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications. Appl Phys B 101:263–271

    Article  CAS  Google Scholar 

  20. Wong CL, Olivo M (2014) Surface Plasmon Resonance Imaging Sensors: A Review. Plasmonics 9:809–824

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, N., Sahu, P.P. All-Optical Surface Plasmonic Universal Logic Gate Devices. Plasmonics 11, 1537–1542 (2016). https://doi.org/10.1007/s11468-016-0207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0207-4

Keywords

Navigation