Skip to main content
Log in

Influence of Plasma Polymerized Dielectric Buffer Layer and Gold Film on the Excitation of Long-Range Surface Plasmon Resonance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Recently, long-range surface plasmon resonance (LRSPR) sensor has attracted a great deal of attention as a potentially non-destructive and label-free technique for cellular studies in real time. Thus, much effort has been placed on the fabrication and optimization of multilayered structure required for the excitation of LRSPR. In this work, a detailed study about the influence of both plasma polymerized dielectric buffer layer (DBL) and thin gold film on the excitation of LRSPR was performed. The DBLs of different thicknesses were deposited directly onto SF11 glass slides by radio frequency plasma polymerization (pp) of perfluorooctyl ethylene (PFOE). Thereafter, Au films of different thicknesses were thermally evaporated onto the ppPFOE layers. Atomic force microscopy (AFM) results suggest that the resulting SF11/ppPFOE/Au structure has a smooth surface regardless of Au film’s thickness. LRSPR measurements indicate that the excitation of LRSPR relies not only on the thickness of the ppPFOE buffer layer, but also on the thickness and optical property of thin Au film. Theoretical simulation based on Fresnel’s equation allows for the determination of both the thickness and optical constant of each layer supporting the LRSPR, and also enables us to predict the optimum combination of ppPFOE and Au film in a LRSPR sensor. The performance of various LRSPR sensors to monitor the bulk refractive index variation has also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang C-T, Mejard R, Griesser HJ, Bagnaninchi PO, Thierry B (2015) Cellular micromotion monitored by long-range surface plasmon resonance with optical fluctuation analysis. Anal Chem 87:1456–1461

    Article  CAS  Google Scholar 

  2. Mejard R, Griesser HJ, Thierry B (2014) Optical biosensing for label-free cellular studies. TrAC-Trends Anal Chem 53:178–186

    Article  CAS  Google Scholar 

  3. Vala M, Robelek R, Bockova M, Wegener J, Homola J (2013) Real-time label-free monitoring of the cellular response to osmotic stress using conventional and long-range surface plasmons. Biosens Bioelectron 40:417–421

    Article  CAS  Google Scholar 

  4. Wang Y, Knoll W, Dostalek J (2012) Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays. Anal Chem 84:8345–8350

    Article  CAS  Google Scholar 

  5. Xuan XY, Xu SP, Liu Y, Li HB, Xu WQ, Lombardi JR (2012) A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced raman scattering. J Phys Chem Lett 3:2773–2778

    Article  CAS  Google Scholar 

  6. Huang CJ, Dostalek J, Knoll W (2010) Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer. Biosens Bioelectron 26:1425–1431

    Article  CAS  Google Scholar 

  7. Wang Y, Brunsen A, Jonas U, Dostalek J, Knoll W (2009) Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix. Anal Chem 81:9625–9632

    Article  CAS  Google Scholar 

  8. Dostalek J, Kasry A, Knoll W (2007) Long range surface plasmons for observation of biomolecular binding events at metallic surfaces. Plasmonics 2:97–106

    Article  CAS  Google Scholar 

  9. Nenninger GG, Tobiska P, Homola J, Yee SS (2001) Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sens Actuators B 74:145–151

    Article  CAS  Google Scholar 

  10. Isaacs S, Abdulhalim I (2015) Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach. Appl Phys Lett 106:193701

    Article  Google Scholar 

  11. Kessler MA, Hall EAH (1996) Multilayered structures exhibiting long-range surface exciton resonance. Thin Solid Films 272:161–169

    Article  CAS  Google Scholar 

  12. Sarid D (1981) Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 47:1927–1930

    Article  CAS  Google Scholar 

  13. Zekriti M, Nesterenko DV, Sekkat Z (2015) Long-range surface plasmons supported by a bilayer metallic structure for sensing applications. Appl Optics 54:2151–2157

    Article  CAS  Google Scholar 

  14. Huang CJ, Knoll W, Sessitsch A, Dostalek J (2014) SPR bacterial pathogen biosensor: the importance of fluidic conditions and probing depth. Talanta 122:166–171

    Article  CAS  Google Scholar 

  15. Huang CJ, Dostalek J, Knoll W (2010) Optimization of layer structure supporting long range surface plasmons for surface plasmon-enhanced fluorescence spectroscopy biosensors. J Vac Sci Technol B 28:66–72

    Article  CAS  Google Scholar 

  16. Wark AW, Lee HJ, Corn RM (2005) Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem 77:3904–3907

    Article  CAS  Google Scholar 

  17. Mejard R, Dostalek J, Huang C-J, Griesser H, Thierry B (2013) Tuneable and robust long range surface plasmon resonance for biosensing applications. Opt Mater 35:2507–2513

    Article  CAS  Google Scholar 

  18. Wang L, Liu X-J, Hao J, Chu L-Q (2015) Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films. Sens Actuators B 215:368–372

    Article  CAS  Google Scholar 

  19. Liu X-J, Wang L, Hao J, Chu L-Q (2015) Pulsed plasma polymerization of perfluorooctyl ethylene for transparent hydrophobic thin coatings. Plasma Sci Technol 17:1013–1018

    Article  Google Scholar 

  20. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638

    Article  CAS  Google Scholar 

  21. Chu L-Q, Zhang Q, Förch R (2015) Surface plasmon-based techniques for the analysis of plasma deposited functional films and surfaces. Plasma Process Polym 12:941–952

    Article  CAS  Google Scholar 

  22. Research Group of Prof. Robert M. Corn, http://unicorn.ps.uci.edu/calculations/fresnel/fcform.html

Download references

Acknowledgments

The authors thank Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 12JCYBJC31700) and Program for New Century Excellent Talents in University, NCET-12-1064 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qiang Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, LQ., Wang, L., Liu, XJ. et al. Influence of Plasma Polymerized Dielectric Buffer Layer and Gold Film on the Excitation of Long-Range Surface Plasmon Resonance. Plasmonics 11, 1519–1524 (2016). https://doi.org/10.1007/s11468-016-0205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0205-6

Keywords

Navigation