Skip to main content
Log in

Surface plasmon-assisted nano-lithography with a perfect contact aluminum mask of a hexagonal dot array

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon lithography is potentially an alternative technique for high resolution patterning. However, implementation involves high cost and challenging fabrication steps. Here, we report nano-patterning assisted by surface plasmons with a perfectly contacted mask using colloidal lithography. A nano-scaled aluminum mask was fabricated using closed packed polystyrene spheres with a simple, fast, and low-cost method, and the loss of surface plasmon waves was reduced by the perfect contact between the mask and the photoresist. A photoresist pattern of two-dimensional hexagonal annular ring arrays was produced by illuminating light of 436 nm wavelength, and the width of the obtained annular ring was approximately λ/6. The simulation results showed that the proposed structure had a sufficiently high contrast value for lithography, and the fabrication patterns and the simulation results presented good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ito T, Okazaki S (2000) Pushing the limits of lithography. Nature 406(6799):1027–1031

    Article  CAS  Google Scholar 

  2. Choksi N, Pickard DS, McCord M, Pease RFW, Shroff Y, Chen Y, Oldham W, Markle D (1999) Maskless extreme ultraviolet lithography. J Vac Sci Technol B Microelectron Nanometer Struct 17(6):3047. doi:10.1116/1.590952

    Article  CAS  Google Scholar 

  3. Vieu C, Carcenac F, Pépin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164(1–4):111–117. doi:10.1016/S0169-4332(00)00352-4

    Article  CAS  Google Scholar 

  4. Steve R, Robert P (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11(4):287

    Article  Google Scholar 

  5. Ouk Kim S, Solak HH, Stoykovich MP, Ferrier NJ, de Pablo JJ, Nealey PF (2003) Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424(6947):411–414

    Article  Google Scholar 

  6. Black CT (2007) Polymer self-assembly as a novel extension to optical lithography. ACS Nano 1(3):147–150. doi:10.1021/nn7002663

    Article  CAS  Google Scholar 

  7. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, US

  8. Xiong W, Du J, Fang L, Luo X, Deng Q, Du C (2008) 193 nm interference nanolithography based on SPP. Microelectron Eng 85(5–6):754–757. doi:10.1016/j.mee.2008.01.057

    Article  CAS  Google Scholar 

  9. Sreekanth KV, Murukeshan VM (2010) Effect of metals on UV-excited plasmonic lithography for sub-50 nm periodic feature fabrication. Applied Physics A 101(1):117–120. doi:10.1007/s00339-010-5769-y

    Article  CAS  Google Scholar 

  10. Guo X, Du J, Guo Y, Yao J (2006) Large-area surface-plasmon polariton interference lithography. Opt Lett 31(17):2613–2615. doi:10.1364/ol.31.002613

    Article  Google Scholar 

  11. Luo X, Ishihara T (2004) Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84(23):4780. doi:10.1063/1.1760221

    Article  CAS  Google Scholar 

  12. Srituravanich W, Fang N, Durant S, Ambati M, Sun C, Zhang X (2004) Sub-100 nm lithography using ultrashort wavelength of surface plasmons. J Vac Sci Technol B 22(6):3475–3478. doi:10.1116/1.1823437

    Article  CAS  Google Scholar 

  13. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4(6):1085–1088. doi:10.1021/nl049573q

    Article  CAS  Google Scholar 

  14. Blaikie RJ, McNab SJ (2001) Evanescent interferometric lithography. Appl Opt 40(10):1692–1698. doi:10.1364/AO.40.001692

    Article  CAS  Google Scholar 

  15. Dong J, Liu J, Kang G, Xie J, Wang Y (2014) Pushing the resolution of photolithography down to 15nm by surface plasmon interference. Sci Rep 4:5618. doi:10.1038/srep05618

    CAS  Google Scholar 

  16. Fan Y, Xi C, Eun-Hyoung C, Chang Seung L, Peng J, Guo LJ (2015) Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure. Appl Phys Express 8(6):062004

    Article  Google Scholar 

  17. Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X (2015) Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl Phys Lett 106(9):093110. doi:10.1063/1.4914000

    Article  Google Scholar 

  18. Prabhathan P, Murukeshan VM (2015) Dielectric supported bimetal layer configuration for long-range surface plasmon polariton interference-based subwavelength lithography. Opt Eng 54(9):097107–097107. doi:10.1117/1.OE.54.9.097107

    Article  Google Scholar 

  19. Luo X, Ishihara T (2004) Subwavelength photolithography based on surface-plasmon polariton resonance. Opt Express 12(14):3055–3065. doi:10.1364/OPEX.12.003055

    Article  Google Scholar 

  20. Wei X, Luo X, Dong X, Du C (2007) Localized surface plasmon nanolithography with ultrahigh resolution. Opt Express 15(21):14177–14183. doi:10.1364/OE.15.014177

    Article  Google Scholar 

  21. Doskolovich LL, Kadomina EA, Kadomin II (2007) Nanoscale photolithography by means of surface plasmon interference. J Opt A Pure Appl Opt 9(10):854

    Article  Google Scholar 

  22. Mehrotra P, Mack CA, Blaikie RJ (2013) A detailed study of resonance-assisted evanescent interference lithography to create high aspect ratio, super-resolved structures. Opt Express 21(11):13710–13725. doi:10.1364/OE.21.013710

    Article  Google Scholar 

  23. Palik ED (1998) Handbook of Optical Constants of Solids: Index, vol 3. Access Online via Elsevier

  24. Ctistis G, Papaioannou E, Patoka P, Gutek J, Fumagalli P, Giersig M (2008) Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films. Nano Lett 9(1):1–6. doi:10.1021/nl801811t

    Article  Google Scholar 

  25. Ctistis G, Patoka P, Wang X, Kempa K, Giersig M (2007) Optical transmission through hexagonal arrays of subwavelength holes in thin metal films. Nano Lett 7(9):2926–2930. doi:10.1021/nl0712973

    Article  CAS  Google Scholar 

  26. Goodberlet JG, Kavak H (2002) Patterning sub-50 nm features with near-field embedded-amplitude masks. Appl Phys Lett 81(7):1315–1317. doi:10.1063/1.1495538

    Article  CAS  Google Scholar 

  27. Yang X, Zeng B, Wang C, Luo X (2009) Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer. Opt Express 17(24):21560–21565. doi:10.1364/OE.17.021560

    Article  CAS  Google Scholar 

  28. Lee E, Hahn JW (2008) The effect of photoresist contrast on the exposure profiles obtained with evanescent fields of nanoapertures. J Appl Phys 103(8):083550. doi:10.1063/1.2907971

    Article  Google Scholar 

  29. Meliorisz B, Partel S, Schnattinger T, Fühner T, Erdmann A, Hudek P (2008) Investigation of high-resolution contact printing. Microelectron Eng 85(5–6):744–748. doi:10.1016/j.mee.2007.12.012

    Article  CAS  Google Scholar 

  30. Lee S, Teshima K, Fujisawa M, Fujii S, Endo M, Oishi S (2009) Fabrication of highly ordered, macroporous Na2W4O13 arrays by spray pyrolysis using polystyrene colloidal crystals as templates. Phys Chem Chem Phys 11(19):3628–3633. doi:10.1039/B821209K

    Article  CAS  Google Scholar 

  31. Darling SB (2007) Directing the self-assembly of block copolymers. Prog Polym Sci 32(10):1152–1204. doi:10.1016/j.progpolymsci.2007.05.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (No. NRF-2014R1A2A2A01005770).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Cheol Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 758 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.S., Kim, Y.M. & Choi, K.C. Surface plasmon-assisted nano-lithography with a perfect contact aluminum mask of a hexagonal dot array. Plasmonics 11, 1337–1342 (2016). https://doi.org/10.1007/s11468-016-0180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0180-y

Keywords

Navigation