Skip to main content
Log in

Polarization Dependence of Terahertz Fabry–Pérot Resonance in Flexible Complementary Metamaterials

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A terahertz (THz) extraordinary transmission from a complementary circular split-ring resonance (CSRR) on polyimide film is investigated via THz time-domain spectroscopy. A distinct single-peak resonance is observed due to the inductive–capacitive (LC) resonance when the THz polarization is perpendicular to the gap of CSRR. When the THz polarization is parallel to the gap of CSRR, a periodic multiple resonances phenomenon is observed. With the help of electric density distribution and surface current analysis, the origin of the frequency resonance is revealed. An asymmetric Fabry–Pérot effect of the CSRR is found to induce aforementioned periodic resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnston MB (2007) Plasmonics: superfocusing of terahertz waves. Nat Photonics 1:14–15

    Article  CAS  Google Scholar 

  2. Williams CR, Andrews SR, Maier SA et al (2008) Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photonics 2:175–179

    Article  CAS  Google Scholar 

  3. Cao W, Song CY, Lanier TE et al (2013) Tailorig terahertz plasmons with silver nanorod arrays. Sci Rep 3:1766

    Google Scholar 

  4. Masson JB, Gallot G (2006) Coupling between surface plasmons in subwavelength hole arrays. Phys Rev B 73:121401

    Article  Google Scholar 

  5. Chen HT, Lu H, Azad AK et al (2008) Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Opt Express 16:7641–7648

    Article  Google Scholar 

  6. Li GF, Jin ZM, Xue X et al (2012) Terahertz coherence control of surface plasmon polariton propagation in subwavelength metallic hole arrays. Appl Phys Lett 100:191115

    Article  Google Scholar 

  7. Ebesen TW, Lezec HJ, Ghaemi HF et al (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  Google Scholar 

  8. Gordon R, Brolo AG, McKinnon A et al (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92:037401

    Article  CAS  Google Scholar 

  9. Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88:057403

    Article  Google Scholar 

  10. Ye YH, Zhang JY (2007) Middle-infrared transmission enhancement through periodically perforated metal films. Appl Phys Lett 84:2977–2979

    Article  Google Scholar 

  11. Ordal MA, Long LL, Bell RJ et al (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22:1099–1120

    Article  CAS  Google Scholar 

  12. Zhang W (2008) Resonant terahertz transmission in plasmonic arrays of subwavelength holes. Eur Phys J Appl Phys 43:1–18

    Article  CAS  Google Scholar 

  13. Padilla WJ, Taylor AJ, Highstrete C et al (2006) Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 96:107401

    Article  CAS  Google Scholar 

  14. Chen HT, O’Hara JF, Taylor AJ et al (2007) Complementary planar terahertz metamaterials. Opt Express 15:1084–1095

    Article  Google Scholar 

  15. Zhu M, Lin YS, Lee CK (2014) Coupling effect combined with incident polarization to modulate double sprit-ring-resonator in terahertz frequency range. J Appl Phys 116:173106

    Article  Google Scholar 

  16. Walia S, Shah CM, Gutruf P et al (2015) Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro-and nano-scales. Appl Phys Rev 2:011303

    Article  Google Scholar 

  17. Ma F, Lin YS, Zhang XH et al (2014) Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci Appl 3:e171

    Article  CAS  Google Scholar 

  18. Khodasevych IE, Shah CM, Sriram S et al (2012) Elastomeric silicone substrates for terahertz fishnet metamaterials. Appl Phys Lett 100:061101

    Article  Google Scholar 

  19. Tao H, Strikwerda AC, Fan K et al (2008) Terahertz metamaterials on free–standing highly–flexible polyimide substrates. J Phys D Appl Phys 41:232004

    Article  Google Scholar 

  20. Miyamaru F, Takeda MW, Taima K (2009) Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region. Appl Phys Express 2:042001

    Article  Google Scholar 

  21. Azad AK, Chen HT, Kasarla SR et al (2009) Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature. Appl Phys Lett 95:011105

    Article  Google Scholar 

  22. Bass M (2010) Handbook of optics 3rd ed. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61307130, 61376010 and 61475168) as well as the Innovation Program of Shanghai Municipal Education Commission (Grant No.14YZ077). ZZ acknowledges the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. WP acknowledges the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04030000).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZY., Zhao, HW., Peng, W. et al. Polarization Dependence of Terahertz Fabry–Pérot Resonance in Flexible Complementary Metamaterials. Plasmonics 10, 1587–1592 (2015). https://doi.org/10.1007/s11468-015-9982-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9982-6

Keywords

Navigation