Skip to main content
Log in

Efficient Light Trapping Structures of Thin Film Silicon Solar Cells Based on Silver Nanoparticle Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report on an investigation into the light trapping efficiency for structures of thin film silicon solar cells, with silver nanoparticle arrays at both front and rear surfaces of the cells. The light trapping efficiencies of the structures are quantified by the weighted mean values of the photons absorbed by the silicon layer, over a wavelength range of 400 to 1100 nm. The weighted mean values are calculated under various combinations of the structural parameters for the silver nanoparticle arrays. The results show that efficient light trapping structures of the solar cells can be achieved by carefully choosing the structural parameters of the metal arrays. This great light absorption by the cell is attributed to the effects induced by the surface plasmon excitation of the metal particles. Based on the analyses, we also suggest that the method employed in this work may be a useful tool to probe other similar structures of the solar cells with metal nanoparticle arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Macdonald D, Cuevas A, Kerr MJ, Samundsett C, Ruby D, Winderbaum S, Leo A (2004) Texturing industrial multicrystalline silicon solar cells. Solar Energy 76:277–283

    Article  CAS  Google Scholar 

  2. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291

    Article  CAS  Google Scholar 

  3. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  Google Scholar 

  4. Catchpole K, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113

    Article  Google Scholar 

  5. Hgglund C, Zch M., Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110

    Article  Google Scholar 

  6. Pillai S, Catchpole K, Trupke T, Green M (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105

    Article  Google Scholar 

  7. Akimov YA, Koh W, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205

    Article  CAS  Google Scholar 

  8. Moulin E, Sukmanowski J, Schulte M, Gordijn A, Royer F, Stiebig H (2008) Thin-film silicon solar cells with integrated silver nanoparticles. Thin Solid Films 516:6813–6817

    Article  CAS  Google Scholar 

  9. Rockstuhl C, Lederer F (2009) Photon management by metallic nanodiscs in thin film solar cells. Appl Phys Lett 94:213102

    Article  Google Scholar 

  10. Akimov YA, Ostrikov K, Li E (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113

    Article  CAS  Google Scholar 

  11. Mokkapati S, Beck F, Polman A, Catchpole K (2009) Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl Phys Lett 95:053115

    Article  Google Scholar 

  12. Diukman I, Orenstein M (2011) How front side plasmonic nanostructures enhance solar cell efficiency. Solar Energy Mater Solar Cells 95:2628–2631

    Article  CAS  Google Scholar 

  13. Islam K, Alnuaimi A, Battal E, Okyay AK, Nayfeh A (2014) Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells. Solar Energy 103:263–268

    Article  CAS  Google Scholar 

  14. Lee YY, Ho WJ, Chen YT (2014) Performance of plasmonic silicon solar cells using indium nanoparticles deposited on a patterned TiO 2 matrix. Thin Solid Films 570:194–199

    Article  CAS  Google Scholar 

  15. Sun C, Su J, Wang XQ A design of thin film silicon solar cells based on silver nanoparticle arrays, Plasmonics, doi:10.1007/s11468-014-9849-2

  16. Beck F, Mokkapati S, Polman A, Catchpole K (2010) Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Appl Phys Lett 96:033113

    Article  Google Scholar 

  17. Ouyang Z, Pillai S, Beck F, Kunz O, Varlamov S, Catchpole KR, Campbell P, Green MA (2010) Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons. Appl Phys Lett 96:261109

    Article  Google Scholar 

  18. Pillai S, Beck F, Catchpole K, Ouyang Z, Green M (2011) The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. J Appl Phys 109:073105

    Article  Google Scholar 

  19. Zhang W, Zheng GG, Li XY (2013) Design of light trapping structures for light-absorption enhancement in thin film solar cells. Int J Light Electron Opt 124:2531–2534

    Article  CAS  Google Scholar 

  20. Sai H, Kondo HF (2009) Back surfacereflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells. Sol Energy Mater Sol Cells 93:1087–1090

    Article  CAS  Google Scholar 

  21. Yang KH, Yang JY (2009) The analysis of light trapping and internal quantum efficiency of a solar cell with DBR back reflector. Solar Energy 83:2050–2058

    Article  CAS  Google Scholar 

  22. Zhao L, Zhou YH, Zhou CL, Li HL, Diao HW, Wang WJ (2010) A highly efficient light-trapping structure for thin-film silicon solar cells. Solar Energy 84:110–115

    Article  CAS  Google Scholar 

  23. Mutitu JG, Shi S, Chen C, Creazzo T, Barnett A, Honsberg C, Prather DW (2008) Thin film solar cell design based on photonic crystal and diffractive grating structures. Opt Express 16:15238–15248

    Article  Google Scholar 

  24. Sidharthan R, Murukeshan VM (2013) Improved light absorption in thin film solar cell using combination of gap modes and grating back reflector. Thin Solid Films 548:581–584

    Article  CAS  Google Scholar 

  25. Zheng GG, Zhang W, Xu LH, Chen YY, Liu YZ (2014) Absorbance enhancement of thin film solar cells with front double dielectric and back metallic grating. Infrared Phys Technol 67:52–57

    Article  CAS  Google Scholar 

  26. Yin YX, Yu ZY, Liu YM, Ye H, Zhang W, Cui QR, Yu XG, Wang PJ, Zhang YN (2014) Design of plasmonic solar cells combining dual interface nanostructure for broadband absorption enhancement. Opt Commun 333:213–218

    Article  CAS  Google Scholar 

  27. FDTD Solutions, www.lumerical.com

  28. Palik ED (1985) Handbook of optical constants of solids. Academic

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 31400718) and the General Project of Scientific Research of Education Department of Liaoning Province of China (Grant L2012444).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Sun or Xiaoqiu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Wang, X. Efficient Light Trapping Structures of Thin Film Silicon Solar Cells Based on Silver Nanoparticle Arrays. Plasmonics 10, 1307–1314 (2015). https://doi.org/10.1007/s11468-015-9934-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9934-1

Keywords

Navigation