Skip to main content
Log in

Behaviors of Surface Plasmon Coupled Light-Emitting Diodes Induced by Surface Ag Nanoparticles on Dielectric Interlayers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The enhanced surface plasmon (SP) coupling effects in a blue light-emitting diode (LED) with regularly patterned (REG) surface Ag nanoparticles (NPs) on a dielectric interlayer (DI) of a lower refractive index overgrown on p-GaN are demonstrated. Without a DI, the surface Ag NPs-induced SP coupling with the quantum wells (QWs) in the LED can lead to the increases of internal quantum efficiency and LED output intensity, the reduction of the external quantum efficiency droop effect, and the enhancement of modulation response. By adding a DI, the SP coupling effect is enhanced, resulting in the further improvements of all the aforementioned factors. We compare the SP coupling effects in the LEDs with REG Ag NPs on DIs to those of randomly distributed (RAN) Ag NPs previously reported. Although the variation trends of the localized surface plasmon (LSP) resonance peaks and hence the SP coupling behaviors of REG and RAN Ag NPs are similar, their LSP resonance strengths at the QW emission wavelength are different due to their different spectral patterns of LSP resonance. In other words, although the REG Ag NPs can produce stronger collective LSP resonance with a narrower spectral width, the SP coupling effect depends mainly on the LSP resonance strength at the QW emission wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yeh DM, Huang CF, Chen CY, Lu YC, Yang CC (2007) Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode. Appl Phys Lett 91(17):171103

    Article  Google Scholar 

  2. Sun G, Khurgin JB, Soref RA (2007) Practicable enhancement of spontaneous emission using surface plasmons. Appl Phys Lett 90(11):111107

    Article  Google Scholar 

  3. Shen KC, Chen CY, Chen HL, Huang CF, Kiang YW, Yang CC, Yang YJ (2008) Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating. Appl Phys Lett 93(23):231111

    Article  Google Scholar 

  4. Kwon MK, Kim JY, Kim BH, Park IK, Cho CY, Byeon CC, Park SJ (2008) Surface-plasmon-enhanced light-emitting diodes. Adv Mater 20(7):1253–1257

    Article  CAS  Google Scholar 

  5. Lin J, Mohammadizia A, Neogi A, Morkoç H, Ohtsu M (2010) Surface plasmon enhanced UV emission in AlGaN/GaN quantum well. Appl Phys Lett 97(22):221104

    Article  Google Scholar 

  6. Kuo Y, Ting SY, Liao CH, Huang JJ, Chen CY, Hsieh C, Lu YC, Chen CY, Shen KC, Lu CF, Yeh DM, Wang JY, Chuang WH, Kiang YW, Yang CC (2011) Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode. Opt Express 19(S4):A914–A929

    Article  CAS  Google Scholar 

  7. Cho CY, Lee SJ, Song JH, Hong SH, Lee SM, Cho YH, Park SJ (2011) Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles. Appl Phys Lett 98(5):051106

    Article  Google Scholar 

  8. N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang (2012) Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells, Scientific Reports 2(#816), 00816

  9. Chen HS, Chen CF, Kuo Y, Chou WH, Shen CH, Jung YL, Kiang YW, Yang CC (2013) Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN. Appl Phys Lett 102(4):041108

    Article  Google Scholar 

  10. Cho CY, Zhang Y, Cicek E, Rahnema B, Bai Y, McClintock R, Razeghi M (2013) Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111). Appl Phys Lett 102(21):211110

    Article  Google Scholar 

  11. Schubert MF, Xu J, Kim JK, Schubert EF, Kim MH, Yoon S, Lee SM, Sone C, Sakong T, Park Y (2008) Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett 93(4):041102

    Article  Google Scholar 

  12. Xie J, Ni X, Fan Q, Shimada R, Özgür Ü, Morkoç H (2008) On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers. Appl Phys Lett 93(12):121107

    Article  Google Scholar 

  13. Maier M, Köhler K, Kunzer M, Pletschen W, Wagner J (2009) Reduced nonthermal rollover of wide-well GaInN light-emitting diodes. Appl Phys Lett 94(4):041103

    Article  Google Scholar 

  14. Delaney KT, Rinke P, Van de Walle CG (2009) Auger recombination rates in nitrides from first principles. Appl Phys Lett 94(19):191109

    Article  Google Scholar 

  15. Kioupakis E, Rinke P, Delaney KT, Van de Walle CG (2011) Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl Phys Lett 98(16):161107

    Article  Google Scholar 

  16. Iveland J, Martinelli L, Peretti J, Speck JS, Weisbuch C (2013) Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys Rev Lett 110(17):177406

    Article  Google Scholar 

  17. Lu CF, Liao CH, Chen CY, Hsieh C, Kiang YW, Yang CC (2010) Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling. Appl Phys Lett 96(26):261104

    Article  Google Scholar 

  18. Lin CH, Hsieh C, Tu CG, Kuo Y, Chen HS, Shih PY, Liao CH, Kiang YW, Yang CC, Lai CH, He GR, Yeh JH, Hsu TC (2014) Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering. Opt Express 22(S3):A842–A856

    Article  CAS  Google Scholar 

  19. Lin CH, Su CY, Kuo Y, Chen CH, Yao YF, Shih PY, Chen HS, Hsieh C, Kiang YW, Yang CC (2014) Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles. Appl Phys Lett 105(10):101106

    Article  Google Scholar 

  20. Yeh DM, Huang CF, Chen CY, Lu YC, Yang CC (2008) Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology 19(34):345201

    Article  Google Scholar 

  21. Kuo Y, Chen HT, Chang WY, Chen HS, Yang CC, Kiang YW (2014) Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device. Opt Express 22(S1):A155–A166

    Article  Google Scholar 

  22. Sun G, Khurgin JB, Yang CC (2009) Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission. Appl Phys Lett 95(17):171103

    Article  Google Scholar 

  23. Lu YC, Chen YS, Tsai FJ, Wang JY, Lin CH, Chen CY, Kiang YW, Yang CC (2009) Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor. Appl Phys Lett 94(23):233113

    Article  Google Scholar 

  24. Chen CY, Wang JY, Tsai FJ, Lu YC, Kiang YW, Yang CC (2009) Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors. Opt Express 17(16):14186–14198

    Article  CAS  Google Scholar 

  25. Zhang S, Watson S, McKendry JJD, Massoubre D, Cogman A, Gu E, Henderson RK, Kelly AE, Dawson MD (2013) 1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs. J Lightwave Technol 31(8):1211–1216

    Article  CAS  Google Scholar 

  26. Tian P, McKendry JJD, Gong Z, Zhang S, Watson S, Zhu D, Watson IM, Gu E, Kelly AE, Humphreys CJ, Dawson MD (2014) Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates. J Appl Phys 115(3):033112

    Article  Google Scholar 

  27. Liao CL, Chang YF, Ho CL, Wu MC (2013) High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer. IEEE Electron Dev Lett 34(2):611–613

    Article  CAS  Google Scholar 

  28. Zhu S, Wang J, Yan J, Zhang Y, Pei Y, Si Z, Yang H, Zhao L, Liu Z, Li J (2014) Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes. ECS Solid State Lett 3(3):R11–R13

    Article  CAS  Google Scholar 

  29. Huang CW, Tseng HY, Chen CY, Liao CH, Hsieh C, Chen KY, Lin HY, Chen HS, Jung YL, Kiang YW, Yang CC (2011) Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN wells. Nanotechnology 22(47):475201

    Article  Google Scholar 

  30. Chen HS, Yao YF, Liao CH, Tu CG, Su CY, Chang WM, Kiang YW, Yang CC (2013) Light-emitting device with regularly patterned growth of an InGaN/GaN quantum-well nanorod light-emitting diode array. Opt Lett 38(17):3370–3373

    Article  CAS  Google Scholar 

  31. Khurgin JB, Sun G, Soref RA (2007) Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit. J Opt Soc Am B 24(8):1968–1980

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Ministry of Science and Technology, Taiwan, The Republic of China, under the grants of NSC 102-2221-E-002-204-MY3, 102-2120-M-002-006, and 102-2221-E-002-199, by the Excellent Research Projects of National Taiwan University (103R890951 and 103R890952), and by US Air Force Scientific Research Office under the contract of AOARD-13-4143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CH., Chen, CH., Yao, YF. et al. Behaviors of Surface Plasmon Coupled Light-Emitting Diodes Induced by Surface Ag Nanoparticles on Dielectric Interlayers. Plasmonics 10, 1029–1040 (2015). https://doi.org/10.1007/s11468-015-9902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9902-9

Keywords

Navigation