Skip to main content
Log in

Nanoscale Control of Temperature Distribution Using a Plasmonic Trimer

  • Published:
Plasmonics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A plasmonic trimer composed of three closely packed identical gold nanospheres for manipulating nanoscale temperature distribution is proposed. It is shown that heat can be unevenly distributed among the three particles, creating a high temperature gradient in the nanoscale space despite the strong thermalization effect. Moreover, the difference in temperature increment among the particles is sensitive to the polarization of incident light and can be continuously tuned. The dependence of the achievable temperature difference on the trimer parameters is also investigated. The ability of nanoscale selective heating provides a possible way of remotely manipulating the nanoscale thermally induced physical or chemical processes with unprecedented spatial precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1:84–90

    Article  Google Scholar 

  2. Carlson MT, Green AJ, Richardson HH (2012) Superheating water by CW excitation of gold nanodots. Nano Lett 12:1534–1537

    Article  CAS  Google Scholar 

  3. Li Q, Zhang W, Zhao H, Qiu M (2013) Two-Dimensional analysis photothermal properties in nanoscale plasmonic waveguides for optical interconnect. J Lightwave Technol 31:4051–4056

    Article  CAS  Google Scholar 

  4. Li Q, Zhang W, Zhao D, Qiu M (2014) Photothermal enhancement in Core-Shell structured plasmonic nanoparticles. Plasmonics 9:623–630

    Article  CAS  Google Scholar 

  5. Bagley AF, Hill S, Rogers GS, Bhatia SN (2013) Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 7:8089–8097

    Article  CAS  Google Scholar 

  6. Stipe BC, Strand TC, Poon CC, Balamane H, Boone TD, Katine JA, Li J, Rawat V, Nemoto H, Hirotsune A, Hellwig O, Ruiz R, Dobisz E, Kercher DS, Robertson N, Albrecht TR, Terris BD (2010) Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nat Photonics 4:484–488

    Article  CAS  Google Scholar 

  7. Baffou G, Bon P, Savatier J, Polleux J, Zhu M, Merlin M, Rigneault HE, Monneret S (2012) Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6:2452–2458

    Article  CAS  Google Scholar 

  8. Baffou G, Girard C, Quidant R (2010) Mapping heat origin in plasmonic structures. Phys Rev Lett 104:136805

    Article  Google Scholar 

  9. Kang T, Hong S, Choi Y, Lee LP (2010) The effect of thermal gradients in SERS spectroscopy. Small 6:2649–2652

    Article  CAS  Google Scholar 

  10. Roxworthy BJ, Bhuiya AM, Vanka SP, Toussaint KC (2014) Understanding and controlling plasmon-induced convection. Nat. Commun 5

  11. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  Google Scholar 

  12. Baffou G, Quidant R (2014) Nanoplasmonics for chemistry. Chem Soc Rev 43:3898–3907

    Article  CAS  Google Scholar 

  13. Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6:2550–2557

    Article  CAS  Google Scholar 

  14. Chen X, Chen Y, Dai J, Yan M, Zhao D, Li Q, Qiu M (2014) Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale 6:1756

    Article  CAS  Google Scholar 

  15. Virk M, Xiong K, Svedendahl M, Käll M, Dahlin AB (2014) A thermal plasmonic sensor platform: resistive heating of nanohole arrays. Nano Lett 14:3544–3549

    Article  CAS  Google Scholar 

  16. Zhang W, Li Q, Qiu M (2013) A plasmon ruler based on nanoscale photothermal effect. Opt Express 21:172–181

    Article  Google Scholar 

  17. Baffou G, Quidant R, García De Abajo FJ (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4:709–716

    Article  CAS  Google Scholar 

  18. Baldwin CL, Bigelow NW, Masiello DJ (2014) Thermal signatures of plasmonic Fano interferences: toward the achievement of nanolocalized temperature manipulation. J Phys Chem Lett 5:1347–1354

    Article  CAS  Google Scholar 

  19. Johnson PB, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  20. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899–903

    Article  CAS  Google Scholar 

  21. Prodan E (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  22. Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marz LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3:1304–1315

    Article  CAS  Google Scholar 

  23. Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138

    Article  CAS  Google Scholar 

  24. Barrow SJ, Wei X, Baldauf JS, Funston AM, Mulvaney P (2012) The surface plasmon modes of self-assembled gold nanocrystals. Nat Commun 3:1275

    Article  Google Scholar 

  25. Baffou G, Rigneault HE (2011) Femtosecond-pulsed optical heating of gold nanoparticles. Phys Rev B 84:35415

    Article  Google Scholar 

  26. Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, Polleux J, Rigneault H (2013) Photoinduced heating of nanoparticle arrays. ACS Nano 7:6478–6488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61275030, 61205030, 61235007, and 61425023), Qianjiang River Fellow Fund of Zhejiang Province, the Scientific Research Foundation for the Returned Overseas Chinese Scholars from the State Education Ministry, the Opened Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, Doctoral Fund of Ministry of Education of China (Grant No. 20120101120128), Zhejiang University K.P. Chao’s High Technology Development Foundation, the Swedish Research Council (VR), and VR’s Linnaeus center in Advanced Optics and Photonics (ADOPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, Q., Zhang, W. et al. Nanoscale Control of Temperature Distribution Using a Plasmonic Trimer. Plasmonics 10, 911–918 (2015). https://doi.org/10.1007/s11468-015-9879-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9879-4

Keywords

Navigation