Skip to main content
Log in

Improve the Plasmonic Spectral Detection of Alpha-Fetoprotein: the Effect of Branch Length on the Coagulation of Gold Nanostars

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A sensitive spectral sensing method for detection of alpha-fetoprotein (AFP) was proposed based on the intense aggregation of colloidal gold nanostars. It has been found that the intensity of the infrared plasmonic absorption peak of the gold nanostar colloid is very sensitive to the addition of AFP. Because of the electrostatic attraction-induced particle aggregation and coagulation, the plasmonic absorbance corresponding to the suspending nanostars fades down rapidly as the AFP concentration is increased. This spectral sensitivity based on the particle aggregation could be effectively improved by increasing the branch length of the gold nanostars, and the limit of detection reaches 2 pg/mL. The corresponding physical mechanism has been illuminated by the tip effect-enhanced surface charge concentration and electrostatic attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. Anal Chim Acta 751:24–43

    Article  CAS  Google Scholar 

  2. Polavarapu L, Pérez-Juste J, Xu QH, Liz-Marzán LM (2014) Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. J Mater Chem C 2:7460–7476

    Article  CAS  Google Scholar 

  3. Zhu J, Yu Z, Li JJ, Zhao JW (2013) Coagulation induced attenuation of plasmonic absorption of Au nanorods: application in ultra sensitive detection of alpha-fetoprotein. Sensors Actuators B 188:318–325

    Article  CAS  Google Scholar 

  4. Duan J, He D, Wang W, Liu Y, Wu H, Wang Y, Fu M, Li S (2013) The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing. Talanta 115:992–998

    Article  CAS  Google Scholar 

  5. Zhu J, Li JJ, Deng XC, Zhao JW (2011) Multifactor-controlled non-monotonic plasmon shift of ordered gold nanodisk arrays: shape-dependent interparticle coupling. Plasmonics 6:261–267

    Article  CAS  Google Scholar 

  6. Zhang M, Liu YQ, Ye BC (2012) Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles. Analyst 137:601–607

    Article  CAS  Google Scholar 

  7. Zhu J, Sun Z, Li JJ, Zhao JW (2012) Bovine serum albumins (BSA) induced aggregation and separation of gold colloid nanoparticles. J Nanosci Nanotechnol 12:2206–2211

    Article  CAS  Google Scholar 

  8. Liao JH, Zhang Y, Yu W (2003) Linear aggregation of gold nanoparticles in ethanol. Colloids Surf A Physicochem Eng Asp 223:177–183

    Article  CAS  Google Scholar 

  9. Vantasin S, Pienpinijtham P, Wongravee K, Thammacharoen C, Ekgasit S (2013) Naked eye colorimetric quantification of protein content in milk using starch-stabilized gold nanoparticles. Sensors Actuators B 177:131–137

    Article  CAS  Google Scholar 

  10. Li CM, Zhen SJ, Wang J, Li YF, Huang CZ (2013) A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens Bioelectron 43:366–371

    Article  CAS  Google Scholar 

  11. Qing Z, He X, Wang K, Zou Z, Yang X, Huang J, Yan G (2012) Colorimetric multiplexed analysis of mercury and silver ions by using a unimolecular DNA probe and unmodified gold nanoparticles. Anal Methods 4:3320–3325

    Article  CAS  Google Scholar 

  12. Teepoo S, Chumsaeng P, Palasak K, Bousod N, Mhadbamrung N, Sae-lim P (2013) Unmodified gold nanoparticles as a simple colorimetric probe for ramoplanin detection. Talanta 117:518–522

    Article  CAS  Google Scholar 

  13. Guan H, Yu J, Chi D (2013) Label-free colorimetric sensing of melamine based on chitosan-stabilized gold nanoparticles probes. Food Control 32:35–41

    Article  CAS  Google Scholar 

  14. Filippo E, Manno D, Buccolieri A, Serra A (2013) Green synthesis of sucralose-capped silver nanoparticles for fast colorimetric triethylamine detection. Sensors Actuators B 178:1–9

    Article  CAS  Google Scholar 

  15. Rohit JV, Kailasa SK (2014) 5-Sulfo anthranilic acid dithiocarbamate functionalized silver nanoparticles as a colorimetric probe for the simple and selective detection of tricyclazole fungicide in rice samples. Anal Methods 6:5934–5941

    Article  CAS  Google Scholar 

  16. Alizadeha A, Khodaei MM, Hamidi Z, Shamsuddin M (2014) Naked-eye colorimetric detection of Cu2+ and Ag+ ions based on close-packed aggregation of pyridines-functionalized gold nanoparticles. Sensors Actuators B 190:782–791

    Article  Google Scholar 

  17. Ghosh SK, Rahman DS, Ali AL, Kalita A (2013) Surface plasmon tunability and emission sensitivity of ultrasmall fluorescent copper nanoclusters. Plasmonics 8:1457–1468

    Article  CAS  Google Scholar 

  18. Li DX, Zhang JF, Jang YH, Jang YJ, Kim DH, Kim JS (2012) Plasmonic-coupling-based sensing by the assembly and disassembly of dipycolylamine-tagged gold nanoparticles induced by complexing with cations and anions. Small 8:1442–1448

    Article  CAS  Google Scholar 

  19. Yang X, Liu H, Xu J, Tang X, Huang H, Tian D (2011) A simple and cost-effective sensing strategy of mercury (II) based on analyte-inhibited aggregation of gold nanoparticles. Nanotechnology 22:275503

    Article  Google Scholar 

  20. Zhu J, Gao HW, Li JJ, Zhao JW (2013) Plasmonic spectral detection of carcinoembryonic antigen by preventing the direct binding of rhodamine 6G with Au nanoparticles. Plasmonics 8:1003–1009

    Article  CAS  Google Scholar 

  21. Chen Z, Tan Y, Zhang C, Yin L, Ma H, Ye N, Qiang H, Lin Y (2014) A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin. Biosens Bioelectron 56:46–50

    Article  CAS  Google Scholar 

  22. Ma Z, Tian L, Wang T, Wang C (2010) Optical DNA detection based on gold nanorods aggregation. Anal Chim Acta 673:179–184

    Article  CAS  Google Scholar 

  23. Pallavicini P, DonàA CA, Chirico G, Collini M, Dacarro G, Falqui A, Milanese C, Sironic L, Taglietti A (2013) Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem Commun 49:6265–6267

    Article  CAS  Google Scholar 

  24. Zhu J, Gao J, Li JJ, Zhao JW (2014) Improve the surface-enhanced Raman scattering from rhodamine 6G adsorbed gold nanostars with vimineous branches. Appl Surf Sci 322:136–142

    Article  CAS  Google Scholar 

  25. Mahapatra N, Halder M, Mahapatra N, Halder M (2014) Facile reversible LSPR tuning through additive induced self-aggregation and dissemination of Ag NPs: role of cyclodextrins and surfactants. RSC Adv 4:18724–18730

    Article  CAS  Google Scholar 

  26. Kitazaki H, Mori T, Kang JH, Niidome T, Murata M, Hashizume M, Katayam Y (2012) A colorimetric assay of protein kinase activity based on peptide-induced coagulation of gold nanorods. Colloids Surf B Biointerfaces 99:7–11

    Article  CAS  Google Scholar 

  27. Mizejewski GJ (2001) Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med (Maywood) 226:377–408

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities under grant no. 2011jdgz17 and the National Natural Science Foundation of China under grant no. 61178075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Wu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Gao, J., Li, JJ. et al. Improve the Plasmonic Spectral Detection of Alpha-Fetoprotein: the Effect of Branch Length on the Coagulation of Gold Nanostars. Plasmonics 11, 1175–1182 (2016). https://doi.org/10.1007/s11468-015-0157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0157-2

Keywords

Navigation