Skip to main content
Log in

Plasmon Resonances in a Periodic Square Coaxial Hole Array in a Graphene Sheet

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a computational study of the plasmon resonances in a periodic square coaxial hole array in a graphene sheet, which consists of a square hole array and a square strip array. According to charge oscillation picture, we find that a new plasmon mode, which locates on the edges of square hole along the polarization direction of incident light, emerges in our proposed structure. Two hybridized plasmon resonance modes (i.e., symmetric and asymmetric plasmon resonance modes) are formed due to two different manners of coupling between the new plasmon mode of square hole and the plasmon mode of square strip. The two plasmon resonance modes can be tuned over a wide wavelength range by a small change in the chemical potential of graphene. Furthermore, the two plasmon resonances can also be controlled by changing L x and L y (which are the strip offsets from the hole center perpendicular and parallel to the polarization direction of incident light, respectively), originating from the change in the strength of electromagnetic coupling between square hole and square strip. Our study gives an insight into the physical mechanism of plasmon resonances in square graphene coaxial hole array, and our findings will be useful for designing graphene-based plasmonic devices and metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface enhanced raman scattering and biophysics. J Phys Cond Mater 14:R597–R624

    Article  CAS  Google Scholar 

  2. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  3. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379

    Article  CAS  Google Scholar 

  4. Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martín-Moreno L, Tejedor C, García-Vidal FJ (2011) Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys Rev Lett 106(2):020501

    Article  CAS  Google Scholar 

  5. Huang XR, Peng RW, Wang Z, Gao F, Jiang SS (2007) Charge-oscillation-induced light transmission through subwavelength slits and holes. Phys Rev A 76(3):035802

    Article  Google Scholar 

  6. Liu H, Lalanne P (2008) Microscopic theory of the extraordinary optical transmission. Nature 452:728–731

    Article  CAS  Google Scholar 

  7. Skigin DC, Loui H, Popovic Z, Kuester EF (2007) Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits. Phys Rev E 76(1):016604

    Article  Google Scholar 

  8. Beermann J, Søndergaard T, Novikov SM, Bozhevolnyi SI, Devaux E, Ebbesen TW (2011) Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films. New J Phys 13(6):063029

    Article  Google Scholar 

  9. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  10. Jablan M, Buljan H, Soljac̆ić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24):245435

    Article  Google Scholar 

  11. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  12. Nikitin AY, Guinea F, Martin-Moreno L (2012) Resonant plasmonic effects in periodic graphene antidot arrays. Appl Phys Lett 101(15):151119

    Article  Google Scholar 

  13. Cheng H, Chen S, Yu P, Duan X, Xie B, Tian J (2013) Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl Phys Lett 103(20):203112

    Article  Google Scholar 

  14. Ke S, Wang B, Huang H, Long H, Wang K, Lu P (2015) Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. Opt Express 23(7):8888–8900

    Article  Google Scholar 

  15. Fallahi A, Perruisseau-Carrier J (2012) Design of tunable biperiodic graphene metasurfaces. Phys Rev B 86(19):195408

    Article  Google Scholar 

  16. Kong XT, Yang X, Li Z, Dai Q, Qiu X (2014) Plasmonic extinction of gated graphene nanoribbon array analyzed by a scaled uniform Fermi level. Opt Lett 39(6):1345–1348

    Article  CAS  Google Scholar 

  17. Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM, García de Abajo FJ, Nordlander P, Zhu X, Halas NJ (2014) Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett 14:299–304

    Article  CAS  Google Scholar 

  18. Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan PM, Kono J, Xu Q (2013) Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett 13:3698–3702

    Article  CAS  Google Scholar 

  19. Zhan TR, Zhao FY, Hu XH, Liu XH, Zi J (2012) Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies. Phys Rev B 86(16):165416

    Article  Google Scholar 

  20. Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377

    Article  CAS  Google Scholar 

  21. Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440

    Article  CAS  Google Scholar 

  22. Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, García de Abajo FJ, Hillenbrand R, Koppens FHL (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487:77–81

    CAS  Google Scholar 

  23. Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:82–85

    CAS  Google Scholar 

  24. Gao W, Shu J, Reichel K, Nickel DV, He X, Shi G, Vajtai R, Ajayan PM, Kono J, Mittleman DM, Xu Q (2014) High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett 14:1242–1248

    Article  CAS  Google Scholar 

  25. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem Res 41(12):1578–1586

    Article  CAS  Google Scholar 

  26. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487(4):153–164

    Article  CAS  Google Scholar 

  27. García-Vidal FJ, Moreno E, Porto JA, Martín-Moreno L (2005) Transmission of light through a single rectangular hole. Phys Rev Lett 95(10):103901

    Article  Google Scholar 

  28. Bao YJ, Peng RW, Shu DJ, Wang M, Lu X, Shao J, Lu W, Ming NB (2008) Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array. Phys Rev Lett 101(8):087401

    Article  Google Scholar 

  29. Carretero-Palacios S, García-Vidal FJ, Martín-Moreno L, Rodrigo SG (2012) Effect of film thickness and dielectric environment on optical transmission through subwavelength holes. Phys Rev B 85(3):035417

    Article  Google Scholar 

  30. Baida FI, Van Labeke D, Granet G, Moreau A, Belkhir A (2004) Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands. Appl Phys B Lasers Opt 79(1):1–8

    Article  CAS  Google Scholar 

  31. Fan W, Zhang S, Minhas B, Malloy KJ, Brueck SRJ (2005) Enhanced infrared transmission through subwavelength coaxial metallic arrays. Phys Rev Lett 94(3):033902

    Article  Google Scholar 

  32. Moreau A, Granet G, Baida FI, Van Labeke D (2003) Light transmission by subwavelength square coaxial aperture arrays in metallic films. Opt Express 11(10):1131–1136

    Article  CAS  Google Scholar 

  33. Orbons SM, Robert A (2006) Resonance and extraordinary transmission in annular aperture arrays. Opt Express 14(26):12623–12628

    Article  CAS  Google Scholar 

  34. He MD, Liu JQ, Wang KJ (2012) Transmission resonances in a symmetry-broken square coaxial aperture in a metal film. J Phys D Appl Phys 45(34):345304

    Article  Google Scholar 

  35. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9):7806–7813

    Article  CAS  Google Scholar 

  36. Hanson GW (2008) Dyadic Green functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

    Article  Google Scholar 

  37. Sommer B, Sonntag J, Ganczarczyk A, Braam D, Prinz G, Lorke A, Geller M (2015) Electron-beam induced nano-etching of suspended graphene. Sci Rep 5:7781

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11174372, 11264021, 11404410, and 11447034) and the Natural Science Foundation of Hunan Province (Grant No. 14JJ3116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Dong He.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KJ., Peng, YX., Wang, L. et al. Plasmon Resonances in a Periodic Square Coaxial Hole Array in a Graphene Sheet. Plasmonics 11, 1129–1137 (2016). https://doi.org/10.1007/s11468-015-0151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0151-8

Keywords

Navigation