Skip to main content
Log in

Ascertaining Plasmonic Hot Electrons Generation from Plasmon Decay in Hybrid Plasmonic Modes

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the propagating process along metal surface, surface plasmon polaritons (SPPs) mainly decay into thermal loss or release into photons, while a part of them were converted into electrons with high energy termed as hot electrons, which have great significance in photonics and electronics. In this work, the generation of plasmonic hot electrons was ascertained in the nanoparticle-film system through plasmon-driven surface catalysis (PDSC) reactions. The surface-enhanced Raman scattering (SERS) spectra of p,p'-dimercaptoazobenzene (DMAB) catalyzed by 4-nitrobenzenethiol (4NBT) experimentally demonstrated the essential catalysis electrons were generated in this hybrid plasmon mode. The results pointed out the priority of plasmonic hot electron generation in the dimer-film gap compared to the monomer-film gap which was analyzed by the surface electric and charge distribution. Furthermore, the SERS spectra of 4NBT in the metal nanoparticle-dielectric film system confirmed the necessity of hybrid plasmon mode in the generation of plasmonic hot electrons in the nanoparticle-film system. Because of the simple configuration and convenient fabrication of nanoparticle-film system, the work on this hybrid plasmon mode has a significant role in promoting the application of plasmonic hot electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  Google Scholar 

  3. Brongersma ML, Shalaev VM (2010) The case for plasmonics. Science 328:440–441

    Article  CAS  Google Scholar 

  4. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  Google Scholar 

  5. Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  6. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS et al (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287):392–395

    Article  CAS  Google Scholar 

  7. Huang YZ, Fang YR, Zhang Z, Zhu L, Sun MT (2014) Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering. Light Sci Appl 3(8):e199. doi:10.1038/lsa.2014.80

    Article  CAS  Google Scholar 

  8. Langhammer C, Larsson EM (2012) Nanoplasmonic in situ spectroscopy for catalysis applications. ACS Catal 2(9):2036–2045

    Article  CAS  Google Scholar 

  9. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663

    Article  CAS  Google Scholar 

  10. Liao Z, Zhou B, Huang Y, Li S, Wang S, Wen W (2014) Fano resonance properties of gold nanocrescent arrays. Appl Opt 53(28):6431–6434

    Article  Google Scholar 

  11. Tong L, Miljkovic VD, Kall M (2010) Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett 10(1):268–273

    Article  CAS  Google Scholar 

  12. Li Z, Zhang S, Tong L, Wang P, Dong B, Xu H (2014) Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force. ACS Nano 8:701–708

    Article  CAS  Google Scholar 

  13. Cai W, Vasudev AP, Brongersma ML (2011) Electrically controlled nonlinear generation of light with plasmonics. Science 333(6050):1720–1723

    Article  CAS  Google Scholar 

  14. Walsh GF, Dal NL (2013) Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. Nano Lett 13(7):3111–3117

    Article  CAS  Google Scholar 

  15. Liu X, Zhang Q, Yip JN, Xiong Q, Sum TC (2013) Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect. Nano Lett 13:5336–5343

    Article  CAS  Google Scholar 

  16. Sorger VJ, Zhang X (2011) Spotlight on plasmon lasers. Science 333(6043):709–710

    Article  CAS  Google Scholar 

  17. Lal S, Hafner JH, Halas NJ, Link S, Nordlander P (2012) Noble metal nanowires: from plasmon waveguides to passive and active devices. Acc Chem Res 45:1887–1895

    Article  CAS  Google Scholar 

  18. Zhang S, Wei H, Bao K, Håkanson U, Halas NJ, Nordlander P et al (2011) Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett 107(9):096801

    Article  Google Scholar 

  19. Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N et al (2011) Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett 11(2):471–475

    Article  CAS  Google Scholar 

  20. Moskovits M (2011) Hot electrons cross boundaries. Science 332(6030):676–677

    Article  CAS  Google Scholar 

  21. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332(6030):702–704

    Article  CAS  Google Scholar 

  22. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8(2):95–103

    Article  CAS  Google Scholar 

  23. Chalabi H, Brongersma ML (2013) Plasmonics: harvest season for hot electrons. Nat Nanotechnol 8(4):229–230

    Article  CAS  Google Scholar 

  24. Giugni A, Torre B, Toma A, Francardi M, Malerba M, Alabastri A et al (2013) Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat Nanotechnol 8(11):845–852

    Article  CAS  Google Scholar 

  25. Li W, Valentine J (2014) Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14(6):3510–3514

    Article  CAS  Google Scholar 

  26. Sun M, Xu H (2012) A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8(18):2777–2786

    Article  CAS  Google Scholar 

  27. Wang H, Liu T, Huang Y, Fang Y, Liu R, Wang S et al (2014) Plasmon-driven surface catalysis in hybridized plasmonic gap modes. Sci Rep 4:7087

    Article  CAS  Google Scholar 

  28. Mubeen S, Lee J, Singh N, Kramer S, Stucky GD, Moskovits M (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8(4):247–251

    Article  CAS  Google Scholar 

  29. Lee J, Mubeen S, Ji X, Stucky GD, Moskovits M (2012) Plasmonic photoanodes for solar water splitting with visible light. Nano Lett 12(9):5014–5019

    Article  CAS  Google Scholar 

  30. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961

    Article  CAS  Google Scholar 

  31. Chalabi H, Schoen D, Brongersma ML (2014) Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett 14(3):1374–1380

    Article  CAS  Google Scholar 

  32. Arquer FPGD, Mihi A, Kufer D, Konstantatos G (2013) Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. ACS Nano 7:3581–3588

    Article  Google Scholar 

  33. Xiang W, Li M, Meng L, Lin K, Feng J, Huang T et al (2014) Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. ACS Nano 8:528–536

    Article  Google Scholar 

  34. Wirth J, Garwe F, Bergmann J, Paa W, Csaki A, Stranik O et al (2014) Tuning of spectral and angular distribution of scattering from single gold nanoparticles by subwavelength interference layers. Nano Lett 14(2):570–577

    Article  CAS  Google Scholar 

  35. Wei H, Hakanson U, Yang Z, Hook F, Xu H (2008) Individual nanometer hole-particle pairs for surface-enhanced Raman scattering. Small 4(9):1296–1300

    Article  CAS  Google Scholar 

  36. Fang Y, Huang Y (2013) Electromagnetic field redistribution in hybridized plasmonic particle-film system. Appl Phys Lett 102(15):153108

    Article  Google Scholar 

  37. Huang Y, Fang Y, Yang Z, Sun M (2010) Can p,p′-dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film? J Phys Chem C 114:18263–18269

    Article  CAS  Google Scholar 

  38. Huang Y, Zhu H, Liu G, Wu D, Ren B, Tian Z (2010) When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc 132:9244–9246

    Article  CAS  Google Scholar 

  39. Sun M, Zhang Z, Zheng H, Xu H (2012) In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci Rep 2:647

    Article  Google Scholar 

  40. Kang L, Xu P, Chen D, Zhang B, Du Y, Han X et al (2013) Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. J Phys Chem C 117(19):10007–10012

    Article  CAS  Google Scholar 

  41. Sun M, Zhang Z, Chen L, Li Q, Sheng S, Xu H et al (2014) Plasmon-driven selective reductions revealed by tip-enhanced Raman spectroscopy. Adv Mater Interfaces 1(5):1300125

    Google Scholar 

  42. Gao P, Gosztola D, Weaver MJ (1988) Surface-enhanced Raman spectroscopy as a probe of eiectroorganic reaction pathways. 1. Processes involving adsorbed nitrobenzene, azobenzene, and related species. J Phys Chem 92:7122–7130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11204390, 91436102, 11374353 and 11004257), Natural Science Foundation Project of CQ CSTC (2014jcyjA40002, 2011jjA90017), Fundamental Research Funds for the Central Universities (106112015CDJXY300003, CDJZR 10100029), Special Fund for Agro-scientific Research in the Public Interest (201303045), sharing fund of Chongqing University’s large-scale equipment 201506150046 and the Program of Liaoning Key Laboratory of Semiconductor Light Emitting and Photocatalytic Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzhou Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, H., Liu, T. et al. Ascertaining Plasmonic Hot Electrons Generation from Plasmon Decay in Hybrid Plasmonic Modes. Plasmonics 11, 909–915 (2016). https://doi.org/10.1007/s11468-015-0125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0125-x

Keywords

Navigation