Skip to main content
Log in

Dynamically Tunable by Kerr Effect Multichannel Filter Based on Plasmon Induced Transparencies at Optical Communication Range

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Dynamically tunable multichannel filter based on plasmon-induced transparencies (PITs) is proposed in a plasmonic waveguide side-coupled to slot and rectangle resonators system at optical communication range. The slot and rectangle resonators in this system can be regarded as radiative or dark resonators as same as the radiative or dark elements in the metamaterial structure with the help of the evanescent coupling. The multiple PIT responses which can enable the realization of nanoscale filter with four channels are originated from the direct near-field coupling and indirect phase couple through a plasmonic waveguide simultaneously. Moreover, the magnitudes and bandwidths of the filter can be efficiently tuned by controlling of the geometric parameters such as the coupling distances and the pump light-induced refractive index change of the Kerr material which is embedded into the metal-dielectric-metal waveguide between the radiative resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2007) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70:1–87

    Article  CAS  Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  3. Yun B, Hu G, Cui Y (2010) Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide. J Phys D Appl Phys 43:385102

    Article  Google Scholar 

  4. Yun B, Hu G, Cui Y (2013) Resonant mode analysis of the nanoscale surface plasmon polaritons waveguide filter with rectangle cavity. Plasmonics 8:267–275

    Article  CAS  Google Scholar 

  5. Wen K, Yan L, Pan W, Luo B, Guo Z, Guo Y, Luo X (2013) Design of plasmonic comb-like filters using loop-based resonators. Plasmonics 8:1017–1022

    Article  CAS  Google Scholar 

  6. Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18:17922–17927

    Article  CAS  Google Scholar 

  7. Setayesh A, Mirnaziry SR, Abrishamian MS (2011) Numerical investigation of a tunable band-pass plasmonics filter with a hollow-core ring resonator. J Opt 13:035004

    Article  Google Scholar 

  8. Lu H, Liu X, Wang G, Mao D (2011) Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 23:444003

    Article  Google Scholar 

  9. Zhou X, Zhou L (2012) Analysis of subwavelength bandpass plasmonic filters based on single and coupled slot nanocavities. Appl Opt 52:480–488

    Article  Google Scholar 

  10. Zhang Z, Shi F, Chen Y (2015) Tunable multichannel plasmonic filter based on coulpling-induced mode splitting. Plasmonics. doi:10.1007/s11468-014-9787-z

    Google Scholar 

  11. Zheng G, Su W, Chen Y, Zhang C, Lai M, Liu Y (2012) Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material. J Opt 14:055001

    Article  Google Scholar 

  12. Peng X, Li H, Wu C, Cao G, Liu Z (2013) Research on transmission characteristics of aperture-coupled square-ring resonator based filters. Opt Commun 294:368–371

    Article  CAS  Google Scholar 

  13. Zand I, Mahigir A, Pakizeh T, Abrishamian MS (2012) Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators. Opt Express 20:7516–7525

    Article  Google Scholar 

  14. Ma F, Lee C (2013) Optical nanofilters based on meta-atom side-coupled plasmonics metal-insulator-metal waveguide. J Lightwave Technol 31:2876–2880

    Article  Google Scholar 

  15. Zhang H, Shen D, Zhang Y (2014) Circular split-ring core resonators used in nanoscale metal-insulator-metal band-stop filters. Laser Phys Lett 11:115902

    Article  Google Scholar 

  16. Wang G, Lu H, Liu X, Mao D, Duan L (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt Express 19:3513–3518

    Article  CAS  Google Scholar 

  17. Pu M, Yao N, Hu C, Xin X, Zhao Z, Wang C, Luo X (2010) Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide. Opt Express 18:21030–21037

    Article  CAS  Google Scholar 

  18. Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19:2910–2914

    Article  CAS  Google Scholar 

  19. Wen K, Hu Y, Chen L, Zhou J, Lei L, Guo Z (2015) Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10:27–32

    Article  CAS  Google Scholar 

  20. Bian Y, Gong Q (2014) Compact all-optical interferometric logic gates based on one-dimensional meal-insulator-metal structures. Opt Commun 313:27–35

    Article  CAS  Google Scholar 

  21. Cao G, Li H, Deng Y, Zhang S, He Z, Li B (2014) Systematic theoretical analysis of selective-mode plasmonic filter based on aperture-side-coupled slot cavity. Plasmonics 9:1163–1169

    Article  CAS  Google Scholar 

  22. Yang X, Hu X, Chai Z, Lu C, Yang H, Gong Q (2014) Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies. Appl Phys Lett 104:221114

    Article  Google Scholar 

  23. Chen J, Wang C, Zhang R, He S, Xiao J (2012) Multiple plasmon-induced transparencies in coupled-resonator system. Opt Lett 37:5133–5135

    Article  Google Scholar 

  24. Han X, Wang T, Wang B, Liu B, He Y, Zhu Y (2015) Low-power and ultrafast all-optical tunable plasmon induced transparency in metal-dielectric-metal waveguide side-coupled Fabry-Perot resonators system. J Appl Phys 117:103105

    Article  Google Scholar 

  25. Han X, Wang T, Li X, Liu B, He Y, Tang J (2015) Dynamically tunable slow light on plasmon induced transparency in disk resonators coupled MDM waveguide system (2015). J Phys D Appl Phys 48:235102

    Article  Google Scholar 

  26. Zhang Z, Zhang L, Li H, Chen H (2014) Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangele cavity. Appl Phys Lett 104:231114

    Article  Google Scholar 

  27. Wang T, Zhang Y, Hong Z, Han Z (2014) Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators. Opt Express 22:21529–21534

    Article  Google Scholar 

  28. Xia X, Wang J, Zhang F, Hu Z, Liu C, Yan X, Yuan L (2015) Multi-mode plasmonically induced transparency in dual coupled graphene-integrated ring resonators. Plasmonics. doi:10.1007/s11468-015-9955-9

    Google Scholar 

  29. Kim M, Lee S, Kim S (2015) Plasmon-induced transparency in coupled graphene gratings. Plasmonics. doi:10.1007/s11468-015-9965-7

    Google Scholar 

  30. Zhu Y, Hu X, Yang H, Gong Q (2014) On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Sci Rep 4:3752

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61376055 and 61006045), and the National Basic Research Program of China (Grant No. 2010CB923204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Wang, T., Li, X. et al. Dynamically Tunable by Kerr Effect Multichannel Filter Based on Plasmon Induced Transparencies at Optical Communication Range. Plasmonics 11, 729–733 (2016). https://doi.org/10.1007/s11468-015-0102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0102-4

Keyword

Navigation