Skip to main content
Log in

Multi-Band High Refractive Index Susceptibility of Plasmonic Structures with Network-Type Metasurface

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We theoretically propose a simple plasmonic structure with network-type metasurface consisting of double-layer metal-dielectric network-type metasurface on the two-layer dielectric films. Multiple reflection bands with minimum full width at half maximum of 3 nm are achieved in the visible and near-infrared regions due to the excitation and hybridized coupling of localized surface plasmons, photonic mode, and optical cavity mode. The plasmonic structure with network-type metasurface also shows highly tunable refractive index sensing performance. The maximum sensitivity to the refractive index (RI) change reaches to 596 nm/RIU (RIU: refractive index unit). The figure of merit can reach as high as 68.57. These results show that the plasmonic structure with network-type metasurface could pave a new way for the high-performance multi-band devices such as sensors and filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li G, Shen Y, Xiao G, Jin C (2015) Double-layered metal grating for high-performance refractive index sensing. Opt Express 23:8995–9003

    Article  Google Scholar 

  2. Liu G, Yu M, Liu Z, Liu X, Huang S, Pan P, Wang Y, Liu M, Gu G (2015) One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface enhanced Raman scattering. Nanotechnology 26:185702

    Article  Google Scholar 

  3. Lee M, Jeon H, Kim S (2015) A highly tunable and fully biocompatible silk nanoplasmonic optical sensor. Nano Lett 15:3358–3363

    Article  CAS  Google Scholar 

  4. Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G (2015) Automatically acquired broadband plasmonic- metamaterial black absorber during the metallic film-formation. ACS Appl Mater Interfaces 7:4962–4968

    Article  CAS  Google Scholar 

  5. Zhang W, Wang Y, Luo L, Li G, Zhang Z (2015) Extraordinary optical transmission of broadband through tapered multilayer slits. Plasmonics 10:547–551

    Article  CAS  Google Scholar 

  6. Liu Z, Liu G, Zhou H, Liu X, Huang K, Chen Y, Fu G (2013) Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays. Nanotechnology 24:155203

    Article  Google Scholar 

  7. Chen H, Liu S, Zi J, Lin Z (2015) Fano resonance-induced negative optical scattering force on plasmonic nanoparticles. ACS Nano 9:1926–1935

    Article  CAS  Google Scholar 

  8. Sugawa K, Tahara H, Yamashita A, Otsuki J, Sagara T, Harumoto T, Yanagida S (2015) Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material. ACS Nano 9:1895–1904

    Article  CAS  Google Scholar 

  9. Sha WEI, Zhu HL, Chen L, Chew WC, Choy WCH (2015) A general design rule to manipulate photocarrier transport path in solar cells and its realization by the plasmonic-electrical effect. Sci Rep 5:8525

    Article  CAS  Google Scholar 

  10. Du C, Wang B, Sun F, Huang M, He C, Liu Y, Zhang X, Shi D (2015) Refractive index sensitivities of plane Ag nanosphere cluster sensors. Sens Actuat B 215:142–145

    Article  CAS  Google Scholar 

  11. Liu Z, Shao H, Liu G, Liu X, Zhou H, Hu Y, Zhang X, Cai Z, Gu G (2014) λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl Phys Lett 104:081116

    Article  Google Scholar 

  12. Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G (2015) Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. J Mater Chem C 3:4222–4226

    Article  CAS  Google Scholar 

  13. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  14. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  15. Pang C, Koo JH, Nguyen A, Caves JM, Kim MG, Chortos A, Kim K, Wang PJ, Tok JBH, Bao Z (2015) High skin-conformal microhairy sensor for pulse signal amplification. Adv Mater 27:634–640

    Article  CAS  Google Scholar 

  16. Thong LV, Loan LTN, Hieu NV (2010) Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures. Sen Actuat B 150:112–119

    Article  Google Scholar 

  17. Kaneti YV, Zakaria QMD, Zhang Z, Chen C, Yue J, Liu M, Jiang X, Yu B (2014) Solvothermal synthesis of ZnO-decorated a-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J Mater Chem A 2:13283–13292

    Article  CAS  Google Scholar 

  18. Mesch M, Zhang C, Braun PV, Giessen H (2015) Functionalized hydrogel on plasmonic nanoantennas for noninvasive glucose sensing. ACS Photonics 2:475–480

    Article  CAS  Google Scholar 

  19. Hottin J, Moreau J, Roger G, Spadavecchia J, Millot MC, Goossens M, Canva M (2007) Plasmonic DNA: towards genetic diagnosis chips. Plasmonics 2:201–215

    Article  CAS  Google Scholar 

  20. Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnology 6:268–276

    Article  CAS  Google Scholar 

  21. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  22. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuat B 54:3–15

    Article  CAS  Google Scholar 

  23. Liu Z, Nie Y, Yuan W, Liu X, Huang S, Chen J, Gao H, Gu G, Liu G (2015) Optical cavity-assisted broadband optical transparency of a plasmonic metal film. Nanotechnology 26:185701

    Article  Google Scholar 

  24. Zhang X, Liu G, Hu Y, Liu Z, Chen Y, Cai Z, Liu X, Gu G, Fu G (2014) Tunable extraordinary optical transmission in a metal film perforated with two-level subwavelength cylindrical hoes. Plasmonics 9:1149–1153

    Article  CAS  Google Scholar 

  25. Liu Z, Liu G, Liu X, Zhou H, Gu G (2014) Multispectral broadband light transparency of a seamless metal film coated with plasmonic crystals. Plasmonics 9:615–622

    Article  CAS  Google Scholar 

  26. Liu Z, Liu G, Liu X, Huang S, Wang Y, Pan P, Liu M (2015) Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology 26:235702

    Article  Google Scholar 

  27. Verre R, Yang ZJ, Shegai T, Käll M (2015) Optical magnetism and plasmonic Fano resonances in metal–insulator–metal oligomers. Nano Lett 15:1952–1958

    Article  CAS  Google Scholar 

  28. Wang X, Morea R, Gonzalo J, Palpant B (2015) Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles. Nano Lett 15:2633–2639

    Article  CAS  Google Scholar 

  29. Liu Z, Liu G, Huang S, Liu X, Pan P, Wang Y, Gu G (2015) Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals. Sens Actuat B 215:480–488

    Article  CAS  Google Scholar 

  30. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method, 2nd edn. Artech House, Boston

    Google Scholar 

  31. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  32. Meng X, Guler U, Kildishev AV, Fujita K, Tanaka K, Shalaev VM (2013) Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity. Sci Rep 3:1241

    Google Scholar 

  33. Ginzburg P, Zayats AV (2012) Non-exponential decay of dark localized surface plasmons. Opt Express 20:6720–6727

    Article  Google Scholar 

  34. Zhang Y, Jia T, Zhang SA, Feng DH, Xu ZZ (2012) Dipole, quadrupole and octupole plasmon resonance modes in non-concentric nanocrescent/nanodisk structure: local field enhancement in the visible and near infrared regions. Opt Express 20:2924–2931

    Article  CAS  Google Scholar 

  35. Ye M, Hu XL, Sun LB, Shi B, Xu Y, Wang LS, Zhao J, Wu YQ, Yang SM, Tai RZ, Jiang JZ, Zhang DX (2015) Duty cycle dependency of the optical transmission spectrum in an ultrathin nanostructured Ag film. J Alloys Compd 621:244–249

    Article  CAS  Google Scholar 

  36. Zhang X, Liu G, Hu Y, Liu Z, Cai Z, Chen Y, Liu X, Fu G, Gu G, Liu M (2014) Enhanced optical transmission in a plasmonic nanostructure perforated with compound holes and nanorods. Opt Commun 325:105–110

    Article  CAS  Google Scholar 

  37. Spada LL (2014) Electromagnetic modeling of metamaterial-based sensors. Conference on RF & Wireless Technologies for Biomedical & Healthcare Applications, London

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 11564017, 11464019, 11264017, and 61308096), and Young Scientist Development Program of Jiangxi Province (No. 20142BCB23008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiqiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Yu, M., Liu, Z. et al. Multi-Band High Refractive Index Susceptibility of Plasmonic Structures with Network-Type Metasurface. Plasmonics 11, 677–682 (2016). https://doi.org/10.1007/s11468-015-0101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0101-5

Keywords

Navigation