Skip to main content

Advertisement

Log in

Modern Theory for Electromagnetic Metamaterials

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The pressure of radiation in double-negative materials (DNG) with simultaneously negative permittivity ε eff and permeability μ eff predicted by Veselago in the 1960s is less than zero. Another object with positive energy density and negative pressure is a mysterious dark energy thought to drive space apart at an accelerating rate. Unfortunately, Veselago’s phenomenological theory based on classical electromagnetism is unsuitable for dark energy because the latter does not participate in electromagnetic interaction. We build a new theory from the first principle where electromagnetic parameters such as permittivity and permeability do not appear. It can be utilized to study remarkable behaviors of metamaterials and dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feinberg G (1967) Possibility of faster-than-light particles. Phys Rev 159:1089–1105

    Article  CAS  Google Scholar 

  2. Feynman RP, Leighton RB, Sands M (1964) The Feynman lectures on physics, vol 1. Addison-Wesley, Reading, §15.9

    Google Scholar 

  3. Wick GC (1954) Properties of Bethe-Salpeter wave functions. Phys Rev 96(4):1124–1134

    Article  CAS  Google Scholar 

  4. Caldwell RR (2002) A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys Lett B 545:23–29

    Article  CAS  Google Scholar 

  5. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Usp 10(4):509–514

    Article  Google Scholar 

  6. Hecht E (2002) Optics. Addison-Wesley, San Francisco, p 141

    Google Scholar 

  7. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79

    Article  CAS  Google Scholar 

  8. Seddon N, Bearpark T (2003) Observation of the inverse Doppler effect. Science 302:1537–1540

    Article  CAS  Google Scholar 

  9. Wang ZY. Lorentz violation for photons in conductors, to be published

  10. Fan J, Wang ZY. Initial observation of lorentz violation in conductor, to be published

  11. Jackson JD (1999) Classical electrodynamics. John Wiley & Sons, New York, p 313

    Google Scholar 

  12. Pendry JB, Holden AJ, Stewart WJ, Youngs II (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76(25):4773–4776

    Article  CAS  Google Scholar 

  13. Schelkunoff SA, Friis HT (1952) Antennas: theory and practice. Wiley, New York, p 584

    Google Scholar 

  14. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47(11):2075–2084

    Article  Google Scholar 

  15. Ives HE, Stilwell GR (1938) An experimental study of the rate of a moving atomic clock. J Opt Soc Am 28(7):215–219

    Article  Google Scholar 

  16. Kundig W (1963) Measurement of the transverse Doppler effect in an accelerated system. Phys Rev 129:2371

    Article  Google Scholar 

  17. Snyder JJ, Hall JL (1975) A new measurement of the relativistic Doppler shift, Laser spectroscopy. Springer, Berlin, pp 6–17

    Google Scholar 

  18. Reinhardt S, Saathoff G, Buhr H et al (2007) Test of relativistic time dilation with fast optic atomic clocks at different velocities. Nat Phys 3(12):861–864

    Article  CAS  Google Scholar 

  19. Botermann B, Bing D, Geppert C et al (2014) Test of time dilation using stored Li + ions as clocks at relativistic speed. Phys Rev Lett 113:120405

    Article  Google Scholar 

  20. Pound RV, Rebka GA Jr (1960) Apparent weight of photons. Phys Rev Lett 4(7):337–341

    Article  Google Scholar 

  21. Chou CW, Hume DB, Rosenband T, Wineland DJ (2010) Optical clocks and relativity. Science 329:1630–1633

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZY. Modern Theory for Electromagnetic Metamaterials. Plasmonics 11, 503–508 (2016). https://doi.org/10.1007/s11468-015-0071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0071-7

Keywords

PACS

Navigation