Skip to main content
Log in

Unidirectional All-Optical Absorption Switch Based on Optical Tamm State in Nonlinear Plasmonic Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrate that unidirectional absorption can be achieved and efficiently tuned in an asymmetrical and nonlinear metal-dielectric-metal plasmonic waveguide by inserting a one-dimensional photonic crystal and a metal layer into the waveguide core. We show that optical Tamm state is excited when the surface impedance of the photonic crystal and that of the metallic layer match with each other. Owing to the strong field confinement induced by the optical Tamm state, high absorption of the surface plasmon can be achieved in the proposed waveguide. The geometric asymmetry of the considered system makes its absorption performance quite different for different incident directions, which is useful for the design of unidirectional plasmonic absorber. Furthermore, Fano resonance, originating from the quantum interference between the optical Tamm state and the traveling waveguide mode, occurs and can be tuned through the nonlinear optical effect. Based on the tunable Fano asymmetric line shape of the considered system, absorption contrast ratio up to 43.5 dB is achieved by varying the intensity of the pumping light, which can be used for all-optical Fano absorption switching. Our results may find potential applications in integrated optical circuits and photodetection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Zhang Q, Huang XG, Lin XS, Tao J, Jin XP (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17:7549–7554

    Article  CAS  Google Scholar 

  3. Neutens P, Dorpe PV, Vlaminck ID, Lagae L, Borghs G (2009) Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat Photonics 3:283–286

    Article  CAS  Google Scholar 

  4. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9:20–27

    Article  CAS  Google Scholar 

  5. Tao J, Wang QJ, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759

    Article  Google Scholar 

  6. Veronis G, Fan S (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102

    Article  CAS  Google Scholar 

  7. Zhang Z, Shi FH, Chen YH (2015) Tunable multichannel plasmonic filter based on coupling-induced mode splitting. Plasmonics 10:139–144

    Article  CAS  Google Scholar 

  8. Fan CR, Shi FH, Wu HX, Chen YH (2015) Tunable all-optical plasmonic diode based on Fano resonance in nonlinear waveguide coupled with cavities. Opt Lett 40:2449–2452

    Article  Google Scholar 

  9. Han ZH, Liu L, Forsberg E (2006) Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons. Opt Commun 259:690–695

    Article  CAS  Google Scholar 

  10. Wang B, Wang GP (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl Phys Lett 87:013107

    Article  CAS  Google Scholar 

  11. Hu X, Li M, Ye Z, Leung WY, Ho KM, Lin SY (2008) Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings. Appl Phys Lett 93:241108

    Article  CAS  Google Scholar 

  12. Zhao F, Zhang C, Chang H, Hu X (2014) Design of plasmonic perfect absorbers for quantum-well infrared photodetection. Plasmonics 9:1397–1400

    Article  CAS  Google Scholar 

  13. Zhang C, Chang H, Zhao F, Hu X (2013) Design principle of Au grating couplers for quantum-well infrared photodetectors. Opt Lett 38:4037–4039

    Article  CAS  Google Scholar 

  14. Landy NI, Bingham CM, Tyler T, Jokerst N, Smith DR, Padilla WJ (2009) Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys Rev B 79:125104

    Article  CAS  Google Scholar 

  15. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800

    Article  CAS  Google Scholar 

  16. Diem M, Koschny T, Soukoulis CM (2009) Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys Rev B 79:033101

    Article  CAS  Google Scholar 

  17. García-Vidal FJ, Pitarke JM, Pendry JB (1997) Effective medium theory of the optical properties of aligned carbon nanotubes. Phys Rev Lett 78:4289–4292

    Article  Google Scholar 

  18. Kravets VG, Neubeck S, Grigorenko AN (2010) Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix. Phys Rev B 81:165401

    Article  CAS  Google Scholar 

  19. Grande M, Vincenti MA, Stomeo T, Bianco GV, Ceglia D, Aközbek N, Petruzzelli V, Bruno G, De Vittorio M, Scalora M, D’Orazio A (2014) Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings. Opt Express 22:31511–31519

    Article  CAS  Google Scholar 

  20. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  21. Bouchon P, Koechlin C, Pardo F, Haïdar R, Pelouard JL (2012) Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt Lett 37:1038–1040

    Article  CAS  Google Scholar 

  22. Zhang BX, Zhao YH, Hao QZ, Kiraly B, Khoo IC, Chen SF, Huang TJ (2011) Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 19:15221–15228

    Article  CAS  Google Scholar 

  23. Collin S, Pardo F, Teissier R, Pelouard JL (2004) Efficient light absorption in metal-semiconductor-metal nanostructures. Appl Phys Lett 85:194–196

    Article  CAS  Google Scholar 

  24. Malassis L, Massé P, Tréguer-Delapierre M, Mornet S, Weisbecker P, Barois P, Simovski CR, Kravets VG, Grigorenko AN (2014) Topological darkness in self-assembled plasmonic metamaterials. Adv Mater 26:324–330

    Article  CAS  Google Scholar 

  25. Amin M, Farhat M, Băgcı H (2013) An ultra-broadband multilayered graphene absorber. Opt Express 21:29938–29948

    Article  CAS  Google Scholar 

  26. Kaliteevski M, Iorsh I, Brand S, Abram RA, Chamberlain JMK, Kavokin AV, Shelykh IA (2007) Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B 76:165415

    Article  CAS  Google Scholar 

  27. Kavokin AV, Shelykh IA, Malpuech G (2005) Lossless interface modes at the boundary between two periodic dielectric structures. Phys Rev B 72:233102

    Article  CAS  Google Scholar 

  28. Symonds C, Lheureux G, Hugonin JP, Greffet JJ, Laverdant J, Brucoli G, Lemaitre A, Senellart P, Bellessa J (2013) Confined Tamm plasmon lasers. Nano Lett 13:3179–3184

    Article  CAS  Google Scholar 

  29. Zhang XL, Song JF, Li XB, Feng J, Sun HB (2012) Optical Tamm states enhanced broad-band absorption of organic solar cells. Appl Phys Lett 101:243901

    Article  CAS  Google Scholar 

  30. Lee KJ, Wu JW, Kim K (2013) Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures. Opt Express 21:28817–28823

    Article  CAS  Google Scholar 

  31. Zhang WL, Yu SF (2010) Bistable switching using an optical Tamm cavity with a Kerr medium. Opt Commun 283:2622–2626

    Article  CAS  Google Scholar 

  32. Zhang WL, Wang F, Rao YJ, Jiang Y (2014) Novel sensing concept based on optical Tamm plasmon. Opt Express 22:14524–14529

    Article  CAS  Google Scholar 

  33. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878

    Article  CAS  Google Scholar 

  34. Kroner M, Govorov AO, Remi S, Biedermann B, Seidl S, Badolato A, Petroff PM, Zhang W, Barbour R, Gerardot BD, Warburton RJ, Karrai K (2008) The nonlinear Fano effect. Nature 451:311–314

    Article  CAS  Google Scholar 

  35. Palik ED (1998) Handbook of optical constants of solids. Vol. I, II, and III. Academic press

  36. Han ZH, Forsberg E, He SL (2007) Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon Technol Lett 19:91–93

    Article  Google Scholar 

  37. Dionne JA, Sweatlock LA, Atwater HA (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407

    Article  CAS  Google Scholar 

  38. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House Publishers, Boston

    Google Scholar 

  39. Bethune DS (1989) Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques. J Opt Soc Am B 6:910–916

    Article  CAS  Google Scholar 

  40. Chen ZF, Han P, Leung CW, Wang Y, Hu MZ, Chen YH (2012) Study of optical Tamm states based on the phase properties of one-dimensional photonic crystals. Opt Express 20:21618–21626

    Article  Google Scholar 

  41. Kang XB, Tan W, Wang ZG, Chen H (2009) Optic Tamm states: the Bloch-wave-expansion method. Phys Rev A 79:043832

    Article  CAS  Google Scholar 

  42. Vinogradov AP, Dorofeenko AV, Erokhin SG, Inoue M, Lisyansky AA, Merzlikin AM, Granovsky AB (2006) Surface state peculiarities in one-dimensional photonic crystal interfaces. Phys Rev B 74:045128

    Article  CAS  Google Scholar 

  43. Boyd RW (2003) Nonlinear optics, 2nd ed. Academic press

  44. Ricard D, Roussignol P, Flytzanis C (1985) Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt Lett 10:511–513

    Article  CAS  Google Scholar 

  45. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 11274126). Y.H. Chen acknowledges financial support from Program for Guangdong Provincial Excellent Young Teacher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihang Chen.

Additional information

Miaosheng Fang and Fenghua Shi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, M., Shi, F. & Chen, Y. Unidirectional All-Optical Absorption Switch Based on Optical Tamm State in Nonlinear Plasmonic Waveguide. Plasmonics 11, 197–203 (2016). https://doi.org/10.1007/s11468-015-0042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0042-z

Keywords

Navigation