Skip to main content

Advertisement

Log in

Multispectral Broadband Light Transparency of a Seamless Metal Film Coated with Plasmonic Crystals

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Broadband light transparency of metallic structures has long been pursued due to the potential applications in the optoelectronic communications, flat panel displays, and clean solar energy. Considerable efforts have been made on the multiband electromagnetic wave transparency of plasmonic metamolecules. However, far less work has been focused on the multispectral light transparency of a seamless metal film. Here, we for the first time propose a seamless metal film structure coated by double conventional plasmonic crystals and demonstrate the observed multispectral broadband light transparency behavior. A maximum transmittance larger than 92 % is achieved. The average transmittance of the whole spectral range from 550 to 1,100 nm is exceeding 45.8 %, suggesting the achievement of an ultra-broadband semi-transparent window. Particularly, the transparency features are highly scalable by tuning the structural parameters. Plasmonic resonances and the metallic particle–film plasmonic interactions are responsible for the observed optical transparency properties. These findings and merits make the proposed structure a good candidate for numerous potential applications, including the optoelectronic components, transparent displayers, and light harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SPs:

Surface plasmons

PCs:

Plasmonic crystals

FDTD:

Finite-difference time-domain

References

  1. Wu H, Kong D, Ruan Z, Hsu P, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y (2013) A transparent electrode based on a metal nanotrough network. Nat Nanotechnol 8(6):421–425

    Article  CAS  Google Scholar 

  2. Hu LB, Wu H, Cui Y (2011) Metal nanogrids, nanowires, and nanofibres for transparent electrodes. Mater Res Soc Bull 36(10):760–765

    Article  Google Scholar 

  3. Groep J, Spinelli P, Polman A (2012) Transparent conducting silver nanowire networks. Nano Lett 12(6):3138–3144

    Article  Google Scholar 

  4. Kim U, Kang J, Lee C, Kwon HY, Hwang S, Moon H, Koo JC, Nam JD, Hong BH, Choi JB, Choi HR (2013) A transparent and stretchable graphene-based actuator for tactile display. Nanotechnology 24(14):145501

    Article  Google Scholar 

  5. Fortunato E, Ginley D, Hosono H, Paine DC (2007) Transparent conducting oxides for photovoltaics. Mater Res Soc Bull 32(3):242–247

    Article  CAS  Google Scholar 

  6. Sun C, Gao H, Shi R, Li C, Du C (2013) Design method for light absorption enhancement in ultra-thin film organic solar cells with the metallic nanoparticles. Plasmonics 8(2):645–650

    Article  CAS  Google Scholar 

  7. Yang M, Jie L, Lin F, Zhu X (2013) Absorption enhancements in plasmonic solar cells coated with metallic nanoparticles. Plasmonics 8(2):877–883

    Article  CAS  Google Scholar 

  8. Zhang Q, Wan X, Xing F, Huang L, Long G, Yi N, Ni W, Liu Z, Tian J, Chen Y (2013) Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Res 6(7):478–484

    Article  CAS  Google Scholar 

  9. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  10. Wang QJ, Li J, Huang C, Zhang C, Zhu YY (2005) Enhanced optical transmission through metal films with rotation-symmetrical hole arrays. Appl Phys Lett 87(9):091105

    Article  Google Scholar 

  11. Wu S, Wang QJ, Yin X, Li J, Zhu D, Liu S, Zhu YY (2008) Enhanced optical transmission: role of the localized surface plasmon. Appl Phys Lett 93(10):101113

    Article  Google Scholar 

  12. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96(23):233901

    Article  Google Scholar 

  13. Jin EX, Xu X (2006) Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture. Appl Phys B 84(1–2):3–9

    Article  CAS  Google Scholar 

  14. Du QG, Sathiyamoorthy K, Zhang LP, Demir HV, Kam CH, Sun XW (2012) A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared. Appl Phys Lett 101(18):181112

    Article  Google Scholar 

  15. Lin XS, Lan S (2013) Design of optical filters with flat-on-top transmission lineshapes based on two side-coupled metallic grooves. Plasmonics 8(2):283–287

    Article  CAS  Google Scholar 

  16. Wei ZY, Cao Y, Fan YC, Yu X, Li HQ (2011) Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures. Opt Express 19(22):21425–21431

    Article  CAS  Google Scholar 

  17. Cui Y, Xu J, Lin Y, Li G, Hao Y, He S, Fang NX (2013) Optical curtain effect: extraordinary optical transmission enhanced by antireflection. Plasmonics 8(2):1087–1093

    Article  CAS  Google Scholar 

  18. Cui Y, He S (2009) Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna. Opt Lett 34(1):16–18

    Article  CAS  Google Scholar 

  19. Zhao D, Gong H, Yang Y, Li Q, Qiu M (2013) Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures. Appl Phys Lett 102(20):201109

    Article  Google Scholar 

  20. Hao J, Qiu C, Qiu M, Zouhdi S (2012) Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures. Opt Lett 37(23):4955–4957

    Article  CAS  Google Scholar 

  21. Song Z, He Q, Xiao S, Zhou L (2012) Making a continuous metal film transparent via scattering cancellations. Appl Phys Lett 101(18):181110

    Article  Google Scholar 

  22. Zhang L, Hao J, Ye H, Yeo SP, Qiu M, Zouhdi S, Qiu CW (2013) Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light. Nanoscale 5:3373–3379

    Article  CAS  Google Scholar 

  23. Liu ZQ, Liu GQ, Zhou HQ, Liu XS, Huang K, Chen YH, Fu G (2013) Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays. Nanotechnology 24(15):155203

    Article  Google Scholar 

  24. Liu ZQ, Liu GQ, Liu XS, Huang K, Chen YH, Fu G (2013) Tunable plasmon-induced transparency of double continuous metal films sandwiched with a plasmonic array. Plasmonics 8(2):1285–1292

    Article  CAS  Google Scholar 

  25. Tang CJ, Wang ZL, Zhang WY, Ming NB, Sun G, Shen P (2009) Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells. Phys Rev B 80(16):165401

    Article  Google Scholar 

  26. Liu ZQ, Hang JT, Chen J, Yan Z, Tang CJ, Chen Z, Zhan P (2012) Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal. Opt Express 20(8):9215–9225

    Article  Google Scholar 

  27. Chen J, Xu R, Liu ZQ, Tang CJ, Chen Z, Wang ZL (2013) Fabrication and infrared-transmission properties of monolayer hexagonal-close-packed metallic nanoshells. Opt Commun 297:194–197

    Article  CAS  Google Scholar 

  28. Liu M, Song Y, Zhang Y, Wang X, Jin C (2012) Mode evolution and transmission suppression in a perforated ultrathin metallic film with a triangular array of holes. Plasmonics 7(3):397–410

    Article  CAS  Google Scholar 

  29. Kreibig U, Vollmer M (1995) Optical properties of metal. Springer, Berlin

    Book  Google Scholar 

  30. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961

    Article  CAS  Google Scholar 

  31. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  32. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  33. Chen Y, Ouyang Z, Gu M, Cheng W (2013) Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv Mater 25(1):80–85

    Article  CAS  Google Scholar 

  34. Liu J, Xu B, Zhang J, Song G (2013) Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit. Plasmonics 8(2):995–1001

    Article  CAS  Google Scholar 

  35. Yang ZP, Lin SY (2009) Experimental realization of plasmonic filters for multispectral and dual-polarization optical detection. Opt Lett 34(24):3893–3895

    Article  Google Scholar 

  36. Xu T, Wu YK, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1:59

    Google Scholar 

  37. Schröter U, Heitmann D (1998) Surface-plasmon-enhanced transmission through metallic gratings. Phys Rev B 58(23):15419–15421

    Article  Google Scholar 

  38. Porto JA, García-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83(14):2845–2848

    Article  CAS  Google Scholar 

  39. Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8(8):2245–2252

    Article  CAS  Google Scholar 

  40. Baida FI, Labeke DV, Granet G, Moreau A, Belkhir A (2004) Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands. Appl Phys B 79(1):1–8

    Article  CAS  Google Scholar 

  41. Lei DY, Fernández-Domínguez AI, Sonnefraud Y, Appavoo K, Haglund RF Jr, Pendry JB, Maier SA (2012) Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano 6(2):1380–1386

    Article  CAS  Google Scholar 

  42. Eah SK, Jaeger HM, Scherer NF, Wiederrecht GP, Lin XM (2005) Scattered light interference from a single metal nanoparticle and its mirror image. J Phys Chem B109(24):11858–11861

    Article  Google Scholar 

  43. Takemori T, Inoue M, Ohtaka K (1987) Optical response of a sphere coupled to a metal substrate. J Phys Soc Jpn 56:1587–1602

    Article  CAS  Google Scholar 

  44. Cesario J, Quidant R, Badenes G, Enoch S (2005) Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Opt Lett 30(24):3404–3406

    Article  Google Scholar 

  45. Shi L, Li H, Du Y, Xie C (2012) Enhanced optical transmission through asymmetric nanostructured gold films. J Opt Soc Am B 29(12):3377–3385

    Article  CAS  Google Scholar 

  46. Yang X, Ishikawa A, Yin X, Zhang X (2011) Hybrid photonic-plasmonic crystal nanocavities. ACS Nano 5(4):2831–2838

    Article  CAS  Google Scholar 

  47. Liu J, Xu B, Hu H, Zhang J, Wei X, Xu Y, Song G (2013) Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system. Opt Express 21(11): doi:10.1364/OE.21.013386

  48. Xie C, Zhu X, Li H, Niu J, Hua Y, Shi L (2013) Fabrication of X-ray diffractive optical elements for laser fusion applications. Opt Eng 52(3):033402

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos.11004088, 11264017 and 11304159), Natural Science Foundation of Jiangxi Province (No. 20122BAB202006), Scientific and Technological Support Project of Jiangxi Province (No.20112BBE50033), and Scientific and Technological Projects of Jiangxi Provincial Education Department (No. GJJ13234).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui-qiang Liu or Gang Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Zq., Liu, Gq., Liu, Xs. et al. Multispectral Broadband Light Transparency of a Seamless Metal Film Coated with Plasmonic Crystals. Plasmonics 9, 615–622 (2014). https://doi.org/10.1007/s11468-014-9672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9672-9

Keywords

Navigation