Skip to main content
Log in

Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Circular and bow tie-shaped Au nanoholes arrays were fabricated on gold films deposited on the tips of single-mode optical fibers. The nanostructures were milled using focused ion beam with a high quality control of their shapes and sizes. The optical fiber devices were used for surface-enhanced resonance Raman scattering (SERRS) measurements in both back- and forward-scattering geometries, yielding promising performance in both detection arrangements. The effect of the hole shape on the SERRS performance was explored with the bow tie nanostructures presenting a better SERRS performance than the circular holes arrays. The results present here are another step towards the development of optical fiber tips modified with plasmonic nanostructures for SERRS applications.

Circular and bow tie-shaped nanohole arrays were milled on gold films deposited on the tips of single-mode optical fibers. The arrays were fabricated by focused ion beam milling, which allowed good control over the sizes and the shapes of the nanostructures. The optical fiber devices were used for surface-enhanced resonance Raman scattering (SERRS) measurements in both back- and forward-scattering geometries. This work represents another step towards the development of optical fiber tips modified with plasmonic nanostructures for SERRS applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolfbeis OS (2006) Anal Chem 78:3859

    Article  CAS  Google Scholar 

  2. Bello JM, Narayanan VA, Stokes DL, Vodinh T (1990) Anal Chem 62:2437

    Article  CAS  Google Scholar 

  3. Mullen KI, Carron KT (1991) Anal Chem 63:2196

    Article  CAS  Google Scholar 

  4. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163

    Article  CAS  Google Scholar 

  5. Jeanmaire DL, Vanduyne RP (1977) J Electroanal Chem 84:1

    Article  CAS  Google Scholar 

  6. Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215

    Article  CAS  Google Scholar 

  7. Brolo AG, Irish DE, Smith BD (1997) J Mol Struct 405:29

    Article  CAS  Google Scholar 

  8. Wu DY, Li JF, Ren B, Tian ZQ (2008) Chem Soc Rev 37:1025

    Article  CAS  Google Scholar 

  9. Kneipp J, Kneipp H, Kneipp K (2008) Chem Soc Rev 37:1052

    Article  CAS  Google Scholar 

  10. Leger C, Bertrand P (2008) Chem Rev 108:2379

    Article  CAS  Google Scholar 

  11. Han XX, Chen L, Ji W, Xie Y, Zhao B, Ozaki Y (2011) Small 7:316

    Article  CAS  Google Scholar 

  12. Pallaoro A, Braun GB, Reich NO, Moskovits M (2010) Small 6:618

    Article  CAS  Google Scholar 

  13. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Phys Rev Lett 78:1667

    Article  CAS  Google Scholar 

  14. Nie SM, Emery SR (1997) Science 275:1102

    Article  CAS  Google Scholar 

  15. Hudson SD, Chumanov G (2009) Anal Bioanal Chem 394:679

    Article  CAS  Google Scholar 

  16. Bell SEJ, Sirimuthu NMS (2008) Chem Soc Rev 37:1012

    Article  CAS  Google Scholar 

  17. Fan M, Andrade GFS, Brolo AG (2011) Anal Chim Acta 693:7

    Article  CAS  Google Scholar 

  18. Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, New York

    Book  Google Scholar 

  19. Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy: and related plasmonic effects. Elsevier, Amsterdam

    Google Scholar 

  20. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668

    Article  CAS  Google Scholar 

  21. Brolo AG, Sanderson AC (2004) Can J Chem-Revue Canadienne De Chimie 82:1474

    Article  CAS  Google Scholar 

  22. Brolo AG, Addison CJ (2005) J Raman Spectrosc 36:629

    Article  CAS  Google Scholar 

  23. Vo-Dinh T, Stokes DL (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, Chichester, p 1302

    Google Scholar 

  24. Stoddart PR, White DJ (2009) Anal Bioanal Chem 394:1761

    Article  CAS  Google Scholar 

  25. Homola J, Yee SS, Gauglitz G (1999) Sensors Actuators B-Chem 54:3

    Article  CAS  Google Scholar 

  26. Sharma AK, Jha R, Gupta BD (2007) IEEE Sensors J 7:1118

    Article  Google Scholar 

  27. Guieu V, Lagugne-Labarthet F, Servant L, Talaga D, Sojic N (2008) Small 4:96

    Article  CAS  Google Scholar 

  28. Andrade GFS, Brolo AG (2012) In: Dmitriev A (ed) Nanoplasmonic sensors. Springer, New York, p 289

    Chapter  Google Scholar 

  29. Stokes DL, Vo-Dinh T (2000) Sensors Actuators B-Chem 69:28

    Article  CAS  Google Scholar 

  30. Andrade GFS, Fan M, Brolo AG (2010) Biosens Bioelectron 25:2270

    Article  CAS  Google Scholar 

  31. Zheng XL, Guo DW, Shao YL, Jia SJ, Xu SP, Zhao B, Xu WQ, Corredor C, Lombardi JR (2008) Langmuir 24:4394

    Article  CAS  Google Scholar 

  32. Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR (2009) Biosens Bioelectron 24:1531

    Article  CAS  Google Scholar 

  33. Smythe EJ, Dickey MD, Bao J, Whitesides GM, Capasso F (2009) Nano Lett 9:1132

    Article  CAS  Google Scholar 

  34. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Langmuir 20:4813

    Article  CAS  Google Scholar 

  35. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nano Lett 4:2015

    Article  CAS  Google Scholar 

  36. Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) Acc Chem Res 41:1049

    Article  CAS  Google Scholar 

  37. Lesuffleur A, Kumar LKS, Brolo AG, Kavanagh KL, Gordon R (2007) J Phys Chem C 111:2347

    Article  CAS  Google Scholar 

  38. Min Q, Santos MJL, Girotto EM, Brolo AG, Gordon R (2008) J Phys Chem C 112:15098

    Article  CAS  Google Scholar 

  39. Dhawan A, Muth JF, Leonard DN, Gerhold MD, Gleeson J, Vo-Dinh T, Russell PE (2008) J Vac Sci Technol B 26:2168

    Article  CAS  Google Scholar 

  40. Kovacs GJ, Loutfy RO, Vincett PS, Jennings C, Aroca R (1986) Langmuir 2:689

    Article  CAS  Google Scholar 

  41. Reilly TH, Chang SH, Corbman JD, Schatz GC, Rowlen KL (2007) J Phys Chem C 111:1689

    Article  CAS  Google Scholar 

  42. Tarcha PJ, DeSaja-Gonzalez J, Rodriguez-Llorente S, Aroca R (1999) Appl Spectrosc 53:43

    Article  CAS  Google Scholar 

  43. Pristinski D, Du H (2006) Opt Lett 31:3246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by operating grants from NSERC and by the NSERC Strategic Network for Bioplasmonic Systems (BiopSys), Canada. The equipment grant was provided by the Canada Foundation for Innovation, the British Columbia Knowledge and Development Fund, and the University of Victoria through the New Opportunities Program. The Brazilian authors thank FAPESP for financial support. The authors thank the Centro de Componentes Semicondutores—UNICAMP for the use of the FIB facility and Antônio Von Zuben, from the Laboratório de Pesquisa de Dispositivos—UNICAMP, for metal coating optical fibers. G.F.S.A. thank the Canadian Bureau for International Education—Department of Foreign Affairs and International Trade of Canada for a post-doctoral fellowship. WJC thank Prof. Reuven Gordon, from the Department of Electrical Engineering at the University of Victoria, for providing access to the Lumerical software.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gustavo F. S. Andrade, Cristiano M. B. Cordeiro or Alexandre G. Brolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, G.F.S., Hayashi, J.G., Rahman, M.M. et al. Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips. Plasmonics 8, 1113–1121 (2013). https://doi.org/10.1007/s11468-013-9518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9518-x

Keywords

Navigation