Skip to main content
Log in

Dissipation equation of motion approach to open quantum systems

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Redfield, The theory of relaxation processes, Adv. Magn. Reson. 1, 1 (1965)

    Article  Google Scholar 

  2. G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48(2), 119 (1976)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17(5), 821 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  4. Y. J. Yan, Quantum Fokker-Planck theory in a non- Gaussian–Markovian medium, Phys. Rev. A 58(4), 2721 (1998)

    Article  ADS  Google Scholar 

  5. R. X. Xu and Y. J. Yan, Theory of open quantum systems, J. Chem. Phys. 116(21), 9196 (2002)

    Article  ADS  Google Scholar 

  6. Y. J. Yan and R. X. Xu, Quantum mechanics of dissipative systems, Annu. Rev. Phys. Chem. 56(1), 187 (2005)

    Article  ADS  Google Scholar 

  7. R. P. Feynman and F. L. Jr Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Ed., Singapore: World Scientific, 2009

    Book  MATH  Google Scholar 

  9. U. Weiss, Quantum Dissipative Systems, 3rd Ed., Series in Modern Condensed Matter Physics, Vol. 13, Singapore: World Scientific, 2008

  10. J. S. Shao, Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys. 120(11), 5053 (2004)

    Article  ADS  Google Scholar 

  11. Y. A. Yan, F. Yang, Y. Liu, and J. S. Shao, Hierarchical approach based on stochastic decoupling to dissipative systems, Chem. Phys. Lett. 395(4–6), 216 (2004)

    Article  ADS  Google Scholar 

  12. Y. Tanimura, Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath, Phys. Rev. A 41(12), 6676 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  13. Y. Tanimura, Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems, J. Phys. Soc. Jpn. 75(8), 082001 (2006)

    Google Scholar 

  14. R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan, Exact quantum master equation via the calculus on path integrals, J. Chem. Phys. 122(4), 041103 (2005)

    Article  ADS  Google Scholar 

  15. R. X. Xu and Y. J. Yan, Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach, Phys. Rev. E 75(3), 031107 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  16. J. J. Ding, J. Xu, J. Hu, R. X. Xu, and Y. J. Yan, Optimized hierarchical equations of motion theory for Drude dissipation and efficient implementation to nonlinear spectroscopies, J. Chem. Phys. 135(16), 164107 (2011)

    Article  ADS  Google Scholar 

  17. J. J. Ding, R. X. Xu, and Y. J. Yan, Optimizing hierarchical equations of motion for quantum dissipation and quantifying quantum bath effects on quantum transfer mechanisms, J. Chem. Phys. 136(22), 224103 (2012)

    Article  ADS  Google Scholar 

  18. J. S. Jin, X. Zheng, and Y. J. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128(23), 234703 (2008)

    Article  ADS  Google Scholar 

  19. Q. Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan, Electron transfer dynamics: Zusman equation versus exact theory, J. Chem. Phys. 130(16), 164518 (2009)

    Article  ADS  Google Scholar 

  20. K. B. Zhu, R. X. Xu, H. Y. Zhang, J. Hu, and Y. J. Yan, Hierarchical dynamics of correlated system-environment coherence and optical spectroscopy, J. Phys. Chem. B 115(18), 5678 (2011)

    Article  Google Scholar 

  21. Y. J. Yan, Theory of open quantum systems with bath of electrons and phonons and spins: Many-dissipaton density matrixes approach, J. Chem. Phys. 140(5), 054105 (2014)

    Article  ADS  Google Scholar 

  22. H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, Nonperturbative spin-boson and spin-spin dynamics and nonlinear Fano interferences: A unified dissipaton theory based study, J. Chem. Phys. 142(2), 024112 (2015)

    Article  ADS  Google Scholar 

  23. J. S. Jin, S. K. Wang, X. Zheng, and Y. J. Yan, Current noise spectra and mechanisms with dissipaton equation of motion theory, J. Chem. Phys. 142(23), 234108 (2015)

    Article  ADS  Google Scholar 

  24. S. Mukamel, The Principles of Nonlinear Optical Spectroscopy, New York: Oxford University Press, 1995

    Google Scholar 

  25. Y. J. Yan and S. Mukamel, Electronic dephasing, vibrational relaxation, and solvent friction in molecular nonlinear optical lineshapes, J. Chem. Phys. 89(8), 5160 (1988)

    ADS  Google Scholar 

  26. A. O. Caldeira and A. J. Leggett, Quantum tunnelling in a dissipative system, Ann. Phys. 1983, 149: 374 [Erratum: 153, 445 (1984)]

    Article  MATH  ADS  Google Scholar 

  27. A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121(3), 587 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. J. Hu, R. X. Xu, and Y. J. Yan, Padé spectrum decomposition of Fermi function and Bose function, J. Chem. Phys. 133(10), 101106 (2010)

    Article  ADS  Google Scholar 

  29. J. Hu, M. Luo, F. Jiang, R. X. Xu, and Y. J. Yan, Padé spectrum decompositions of quantum distribution functions and optimal hierarchial equations of motion construction for quantum open systems, J. Chem. Phys. 134(24), 244106 (2011)

    Article  ADS  Google Scholar 

  30. R. X. Xu, B. L. Tian, J. Xu, Q. Shi, and Y. J. Yan, Hierarchical quantum master equation with semiclassical Drude dissipation, J. Chem. Phys. 131(21), 214111 (2009)

    Article  ADS  Google Scholar 

  31. B. L. Tian, J. J. Ding, R. X. Xu, and Y. J. Yan, Biexponential theory of Drude dissipation via hierarchical quantum master equation, J. Chem. Phys. 133(11), 114112 (2010)

    Article  ADS  Google Scholar 

  32. H. D. Zhang and Y. J. Yan, Onsets of hierarchy truncation and self-consistent Born approximation with quantum mechanics prescriptions invariance, J. Chem. Phys. 143(21), 214112 (2015)

    Article  ADS  Google Scholar 

  33. X. Zheng, R. X. Xu, J. Xu, J. S. Jin, J. Hu, and Y. J. Yan, Hierarchical equations of motion for quantum dissipation and quantum transport, Prog. Chem. 2012, 24(06): 1129, http://wwwprogchemaccn/EN/abstract/abstract10858. shtml

    Google Scholar 

  34. P. Cui, X. Q. Li, J. S. Shao, and Y. J. Yan, Quantum transport from the perspective of quantum open systems, Phys. Lett. A 357(6), 449 (2006)

    Article  ADS  Google Scholar 

  35. J. S. Jin, J. Li, Y. Liu, X. Q. Li, and Y. J. Yan, Improved master equation approach to quantum transport: From Born to self-consistent Born approximation, J. Chem. Phys. 140(24), 244111 (2014)

    Article  ADS  Google Scholar 

  36. D. Hou, S. K. Wang, R. L. Wang, L. Z. Ye, R. X. Xu, X. Zheng, and Y. J. Yan, Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov–Bohm interferometers, J. Chem. Phys. 142(10), 104112 (2015)

    Article  ADS  Google Scholar 

  37. Y. Tanimura and P. G. Wolynes, Quantum and classical Fokker–Planck equations for a Guassian–Markovian noise bath, Phys. Rev. A 43(8), 4131 (1991)

    Article  ADS  Google Scholar 

  38. X. Q. Li and Y. J. Yan, Quantum master equation scheme of time-dependent density functional theory to time-dependent transport in nanoelectronic devices, Phys. Rev. B 75(7), 075114 (2007)

    Article  ADS  Google Scholar 

  39. Y. Tanimura, Real-time and imaginary-time quantum hierarchal Fokker–Planck equations, J. Chem. Phys. 142(14), 144110 (2015)

    Article  ADS  Google Scholar 

  40. L. H. Ryder, Quantum Field Theory, 2nd Ed., Cambridge: Cambridge University Press, 1996

    Book  MATH  Google Scholar 

  41. H. D. Zhang, J. Xu, R. X. Xu, and Y. J. Yan, Modified Zusman qquation for quantum solvation dynamics and rate processes, in: Reaction Rate Constant Computations: Theories and Applications, edited by K.-L. Han and T.-S. Chu, pp. 319–336, Ch. 13, RSC Theoretical and Computational Chemistry Series No.6, 2014, http://dxdoiorg/10.1039/9781849737753-00319

  42. X. Zheng, J. S. Jin, and Y. J. Yan, Dynamic electronic response of a quantum dot driven by time-dependent voltage, J. Chem. Phys. 129(18), 184112 (2008)

    Article  ADS  Google Scholar 

  43. X. Zheng, J. S. Jin, and Y. J. Yan, Dynamic Coulomb blockade in single-lead quantum dots, New J. Phys. 10(9), 093016 (2008)

    Article  ADS  Google Scholar 

  44. X. Zheng, J. Y. Luo, J. S. Jin, and Y. J. Yan, Complex non- Markovian effect on time-dependent quantum transport, J. Chem. Phys. 130(12), 124508 (2009)

    Article  ADS  Google Scholar 

  45. F. Jiang, J. S. Jin, S. K. Wang, and Y. J. Yan, Inelastic electron transport through mesoscopic systems: Heating versus cooling and sequential tunneling versus cotunneling processes, Phys. Rev. B 85(24), 245427 (2012)

    Article  ADS  Google Scholar 

  46. S. K. Wang, X. Zheng, J. S. Jin, and Y. J. Yan, Hierarchical Liouville-space approach to nonequilibrium dynamic properties of quantum impurity systems, Phys. Rev. B 88(3), 035129 (2013)

    Article  ADS  Google Scholar 

  47. X. Zheng, Y. J. Yan, and M. Di Ventra, Kondo memory in driven strongly correlated quantum dots, Phys. Rev. Lett. 111(8), 086601 (2013)

    Article  ADS  Google Scholar 

  48. L. Z. Ye, D. Hou, R. L. Wang, D. W. Cao, X. Zheng, and Y. J. Yan, Thermopower of few-electron quantum dots with Kondo correlations, Phys. Rev. B 90(16), 165116 (2014)

    Article  ADS  Google Scholar 

  49. Z. H. Li, N. H. Tong, X. Zheng, D. Hou, J. H. Wei, J. Hu, and Y. J. Yan, Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems, Phys. Rev. Lett. 109(26), 266403 (2012)

    Article  ADS  Google Scholar 

  50. D. Hou, R. Wang, X. Zheng, N. H. Tong, J. H. Wei, and Y. J. Yan, Hierarchical equations of motion for impurity solver in dynamical mean-field theory, Phys. Rev. B 90(4), 045141 (2014)

    Article  ADS  Google Scholar 

  51. T. Ozaki, Continued fraction representation of the Fermi- Dirac function for large-scale electronic structure calculations, Phys. Rev. B 75(3), 035123 (2007)

    Article  ADS  Google Scholar 

  52. P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124(1), 41 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  53. Y. Meir, N. S. Wingreen, and P. A. Lee, Low-temperature transport through a quantum dot: The Anderson model out of equilibrium, Phys. Rev. Lett. 70(17), 2601 (1993)

    Article  ADS  Google Scholar 

  54. J. Xu, R. X. Xu, D. Abramavicius, H. D. Zhang, and Y. J. Yan, Advancing hierarchical equations of motion for efficient evaluation of coherent two-dimensional spectroscopy, Chin. J. Chem. Phys. 24(5), 497 (2011)

    Article  Google Scholar 

  55. J. Xu, H. D. Zhang, R. X. Xu, and Y. J. Yan, Correlated driving and dissipation in two-dimensional spectroscopy, J. Chem. Phys. 138(2), 024106 (2013)

    Article  ADS  Google Scholar 

  56. R. W. Freund and N. M. Nachtigal, QMR: A quasiminimal residual method for non-Hermitian linear systems, Numer. Math. 60(1), 315 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  57. R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput. 14(2), 470 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. G. Stefanucci, Bound states in ab initio approaches to quantum transport: A time-dependent formulation, Phys. Rev. B 75(19), 195115 (2007)

    Article  ADS  Google Scholar 

  59. Y. Mo, R. X. Xu, P. Cui, and Y. J. Yan, Correlation and response functions with non-Markovian dissipation: A reduced Liouville-space theory, J. Chem. Phys. 122(8), 084115 (2005)

    Article  ADS  Google Scholar 

  60. Y. X. Cheng, W. J. Hou, Y. D. Wang, Z. H. Li, J. H. Wei, and Y. J. Yan, Time-dependent transport through quantum-impurity systems with Kondo resonance, New J Phys. 17(3), 033009 (2015)

    Article  Google Scholar 

  61. J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys. 58(2), 323 (1986)

    Article  ADS  Google Scholar 

  62. H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, 2nd Ed., Berlin: Springer, 2007

    Google Scholar 

  63. A. Croy and U. Saalmann, Propagation scheme for nonequilibrium dynamics of electron transport in nanoscale devices, Phys. Rev. B 80(24), 245311 (2009)

    Article  ADS  Google Scholar 

  64. J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)

    Article  Google Scholar 

  65. W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)

    Article  Google Scholar 

  66. K. G. Wilson, The renormalization group: Critical phenomena and Kondo problem, Rev. Mod. Phys. 47(4), 773 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  67. R. Bulla, T. A. Costi, and T. Pruschke, Numerical renormalization group method for quantum impurity systems, Rev. Mod. Phys. 80(2), 395 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiJing Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Jin, J., Xu, RX. et al. Dissipation equation of motion approach to open quantum systems. Front. Phys. 11, 110306 (2016). https://doi.org/10.1007/s11467-016-0513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0513-5

Keywords

Navigation