Skip to main content
Log in

Numerical investigation of relationship between water contact angle and drag reduction ratio of superhydrophobic surfaces

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

This paper proposes a novel bubble model to analyze drag reduction. The relationship between the slip length and air bubble height is discussed. The numerical relationship between the surface contact angle and slip length is obtained using the solid-liquid contact ratio in the Cassie equation. The surface drag reduction ratio increases by 40% at low velocities when the solid liquid contact ratio decreases from 90% to 10%. An experimental setup to study liquid/solid friction drag is reported. The drag reduction ratio for the superhydrophobic surface tested experimentally is 30%–35% at low velocities. These results are similar to the simulation results obtained at low velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. L. Zhang, H. Xia, E. Kim, and H. B. Sun, Recent developments in superhydrophobic surfaces with unique structural and functional properties, Soft Matter 8(44), 11217 (2012)

    Article  ADS  Google Scholar 

  2. C. H. Xue, S. T. Jia, J. Zhang, and J. Z. Ma, Large-area fabrication of superhydrophobic surfaces for practical applications: An overview, Sci. Technol. Adv. Mater. 11(3), 033002 (2010)

    Article  Google Scholar 

  3. G. McHale, M. Newton, and N. Shirtcliffe, Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties, Soft Matter 6(4), 714 (2010)

    Article  ADS  Google Scholar 

  4. Y. Zhao, Y. Song, W. Song, W. Liang, X. Jiang, Z. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)

    Article  Google Scholar 

  5. N. P. Dasgupta and P. Yang, Semiconductor nanowires for photovoltaic andphotoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)

    Article  Google Scholar 

  6. P. Tao, W. Shang, C. Song, Q. Shen, F. Zhang, Z. Luo, N. Yi, D. Zhang, and T. Deng, Bioinspired engineering of thermal materials, Adv. Mater. 27(3), 428 (2015)

    Article  Google Scholar 

  7. J. Wang, M. Liu, R. Ma, Q. Wang, and L. Jiang, In situ wetting state transition on micro- and nanostructured surfaces at high temperature, ACS Appl. Mater. Interfaces 6(17), 15198 (2014)

    Article  Google Scholar 

  8. U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, Bioinspired structural materials, Nat. Mater. 14(1), 23 (2014)

    Article  ADS  Google Scholar 

  9. W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, and H. F. Bohn, The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater. 22(21), 2325 (2010)

    Article  Google Scholar 

  10. S. Lyu, D. C. Nguyen, D. Kim, W. Hwang, and B. Yoon, Experimental drag reduction study of super-hydrophobic surface with dual-scale structures, Appl. Surf. Sci. 286, 206 (2013)

    Article  ADS  Google Scholar 

  11. J. Cui, W. Li, and W. Lam, Numerical investigation on drag reduction with superhydrophobic surfaces by lattice- Boltzmann method, Comput. Math. Appl. 61(12), 3678 (2011)

    Article  Google Scholar 

  12. Y. Gan, A. Xu, G. Zhang, and Y. Li, Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions, Front. Phys. 7(4), 481 (2012)

    Article  MathSciNet  Google Scholar 

  13. K. Fukagata, N. Kasagi, and P. Koumoutsakos, A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces, Phys. Fluids 18(5), 051703 (2006)

    Article  ADS  Google Scholar 

  14. E. Lauga and H. A. Stone, Effective slip in pressure-driven Stokes flow, J. Fluid Mech. 489, 55 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J. Davies, D. Maynes, B. W. Webb, and B. Woolford, Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs, Phys. Fluids 18(8), 087110 (2006)

    Article  ADS  Google Scholar 

  16. Y. P. Cheng, C. J. Teo, and B. C. Khoo, Microchannel flows with superhydrophobic surfaces: Effects of Reynolds number and pattern width to channel height ratio, Phys. Fluids 21(12), 122004 (2009)

    Article  ADS  MATH  Google Scholar 

  17. J. Yang, J. Duan, D. Fornasiero, and J. Ralston, Very small bubble formation at the solid-water interface, J. Phys. Chem. B 107(25), 6139 (2003)

    Article  Google Scholar 

  18. J. Wang, H. Chen, T. Sui, A. Li, and D. Chen, Investigation on hydrophobicity of lotus leaf: Experiment and theory, Plant Sci. 176(5), 687 (2009)

    Article  Google Scholar 

  19. S. R. German, X.Wu, H. An, V. S. J. Craig, T. L. Mega, and X. Zhang, Interfacial nanobubbles are leaky: Permeability of the gas/water interface, ACS Nano 8(6), 6193 (2014)

    Article  Google Scholar 

  20. X. Zhang, A. Quinn, and W. A. Ducker, Nanobubbles at the interface between water and a hydrophobic solid, Langmuir 24(9), 4756 (2008)

    Article  Google Scholar 

  21. J. Wang, B.Wang, and D. Chen, Underwater drag reduction by gas, Friction 2(4), 295 (2014)

    Article  Google Scholar 

  22. K. Mohanarangam, S. C. P. Cheung, J. Y. Tu, and L. Chen, Numerical simulation of micro-bubble drag reduction using population balance model, Ocean Eng. 36(11), 863 (2009)

    Article  Google Scholar 

  23. P. P. Modi and S. Jayanti, Pressure losses and flow maldistribution in ducts with sharp bends, Chem. Eng. Res. Des. 82(3), 321 (2004)

    Article  Google Scholar 

  24. B. M. Borkent, S. M. Dammer, H. Schonherr, G. J. Vancso, and D. Lohse, Superstability of surface nanobubbles, Phys. Rev. Lett. 98(20), 204502 (2007)

    Article  ADS  Google Scholar 

  25. P. Joseph, C. Cottin-Bizonne, J. M. Benoit, C. Ybert, C. Journet, P. Tabeling, and L. Bocquet, Slippage of water past superhydrophobic carbon nanotube forests in microchannels, Phys. Rev. Lett. 97(15), 156104 (2006)

    Article  ADS  Google Scholar 

  26. A. Steinberger, C. Cottin-Bizonne, P. Kleimann, and E. Charlaix, High friction on a bubble mattress, Nat. Mater. 6(9), 665 (2007)

    Article  ADS  Google Scholar 

  27. C. Lee and C. J. Kim, Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls, Langmuir 25(21), 12812 (2009)

    Article  Google Scholar 

  28. J. Hyväluoma and J. Harting, Slip flow over structured surfaces with entrapped microbubbles, Phys. Rev. Lett. 100(24), 246001 (2008)

    Article  ADS  Google Scholar 

  29. S. Richardson, No-slip boundary condition, J. Fluid Mech. 59(04), 707 (1973)

    Article  ADS  MATH  Google Scholar 

  30. K. M. Jansons, Determination of the macroscopic (partial) slip boundary condition for a viscous flow over a randomly rough surface with a perfect slip microscopic boundary condition, Phys. Fluids 31(1), 15 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  31. Y. Wang, X. W. Liu, H. F. Zhang, and Z. P. Zhou, Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water, RSC Advances 5(24), 18909 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Zhang, HF., Shi, SY. et al. Numerical investigation of relationship between water contact angle and drag reduction ratio of superhydrophobic surfaces. Front. Phys. 11, 114701 (2016). https://doi.org/10.1007/s11467-015-0546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0546-1

Keywords

Navigation