Skip to main content
Log in

Processing parameter optimization of fiber laser beam welding using an ensemble of metamodels and MOABC

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In fiber laser beam welding (LBW), the selection of optimal processing parameters is challenging and plays a key role in improving the bead geometry and welding quality. This study proposes a multi-objective optimization framework by combining an ensemble of metamodels (EMs) with the multi-objective artificial bee colony algorithm (MOABC) to identify the optimal welding parameters. An inverse proportional weighting method that considers the leave-one-out prediction error is presented to construct EM, which incorporates the competitive strengths of three metamodels. EM constructs the correlation between processing parameters (laser power, welding speed, and distance defocus) and bead geometries (bead width, depth of penetration, neck width, and neck depth) with average errors of 10.95%, 7.04%, 7.63%, and 8.62%, respectively. On the basis of EM, MOABC is employed to approximate the Pareto front, and verification experiments show that the relative errors are less than 14.67%. Furthermore, the main effect and the interaction effect of processing parameters on bead geometries are studied. Results demonstrate that the proposed EM-MOABC is effective in guiding actual fiber LBW applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABC:

Artificial bee colony

DOE:

Design of experiment

EM:

Ensemble of metamodel

KRG:

Kriging

LBW:

Laser beam welding

LOO:

Leave-one-out

MOABC:

Multi-objective artificial bee colony algorithm

PDAS:

Primary dendrite arm spacing

RBF:

Radial basis function

RSM:

Response surface method

SVR:

Support vector regression

C 0 :

Specific heat at constant pressure of the workpiece

C m :

Predetermined maximum cycle number of the searching processes for the bees

C r :

Repeated cycle number of the searching processes for the bees

D :

Defocus distance

D n :

Neck depth

D +n , D n :

Maximum and minimum values of Dn in the Pareto optimal solutions, respectively

D p :

Depth of penetration

|D pH|+, |D pH| :

Maximum and minimum values of |DpH| in the Pareto optimal solutions, respectively

E k1 , E k2 :

LOO errors of the first and second metamodels selected for the variable k, respectively

E al :

Generalized relative maximum absolute error under the leave-one-out method

E r :

Relative error of the four outputs

E sl :

Generalized root mean square error under the leave-one-out method

\(\hat f\left(\cdot \right)\) :

Approximation approach using the metamodel

\({{\hat f}_i}\left(x \right)\) :

Predictive response of the ith individual metamodel at sample point x

f(x i):

Actual experimental value of the ith sample point

\(\hat f\left({{x_{- i}}} \right)\) :

Predictive response from the metamodel trained using the full data sets with the ith sample point excluded out

\(\hat f_1^k\left(x \right),\,\hat f_2^k\left(x \right)\) :

First and second metamodel selected for the variable k, respectively

\(\hat f_{\rm{E}}^k\left(x \right)\) :

Prediction value of the integrated EM for the variable k

\(\hat f_{\rm{E}}^{{D_{\rm{n}}}}\left(x \right)\) :

Integrated EM for the variable Dn

fitness(X i):

Quality (fitness value) of the food source of Xi

H :

Thickness of the workpiece

k :

Output response variable

K :

Thermal conductivity of the workpiece

m :

Number of sample points

P :

Laser power

P i :

Probability value for onlooker bees to select the ith food source

Q :

u feasible solutions (food sources)

rand(0, 1):

A random number between 0 and 1

S :

Welding speed

S n :

Sum of normalized bead geometries

t :

Duration of temperature variation

T :

Reference temperature

T 0 :

Room temperature

u :

Number of the initial solution population in colony initialization phase

v :

Dimension of each initial solution in colony initialization phase

V e :

Experimental values of the four outputs

V p :

Predicted values of the four outputs

w 1, w 2, w 3, w 4 :

Weighting values of the four optimization objectives

W b :

Bead width

W +b , W b :

Maximum and minimum values of Wb in the Pareto optimal solutions, respectively

W n :

Neck width

W +n , W n :

Maximum and minimum values of Wn in the Pareto optimal solutions, respectively

x :

Input value of the metamodel

x i,j :

jth dimension of the ith feasible solution

x p,j :

One of the u food sources other than xi,j

x max,j, x min,j :

Upper and lower bounds of the jth dimension, respectively

X i :

ith feasible solution (food source) in MOABC

Y :

Output response of the metamodel

α :

Coefficient vector of the metamodel

δ :

Difference between the maximum and minimum mean bead geometries

ε :

Stochastic factor of the metamodel

θ i,j :

Neighborhood of xi,j for searching a better food source

ρ :

Material density of the workpiece

ϕ i,j :

Change rate of food sources during the employed bees phase

ω k1 , ω k2 :

Weights of first and second metamodel for the variable k, respectively

References

  1. Huang L J, Hua X M, Wu D S, Ye Y X. Role of welding speed on keyhole-induced porosity formation based on experimental and numerical study in fiber laser welding of Al alloy. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 913–925

    Article  Google Scholar 

  2. Hong K M, Shin Y C. Prospects of laser welding technology in the automotive industry: a review. Journal of Materials Processing Technology, 2017, 245: 46–69

    Article  Google Scholar 

  3. Stavridis J, Papacharalampopoulos A, Stavropoulos P. Quality assessment in laser welding: a critical review. The International Journal of Advanced Manufacturing Technology, 2018, 94(5): 1825–1847

    Article  Google Scholar 

  4. Zeng Z, Panton B, Oliveira J P, Han A, Zhou Y N. Dissimilar laser welding of NiTi shape memory alloy and copper. Smart Materials and Structures, 2015, 24(12): 125036

    Article  Google Scholar 

  5. Oliveira J P, Braz Fernandes F M, Miranda R M, Schell N, Ocana J L. Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi. Materials Characterization, 2016, 119: 148–151

    Article  Google Scholar 

  6. Oliveira J P, Shen J J, Escobar J D, Salvador C A F, Schell N, Zhou N, Benafan O. Laser welding of H-phase strengthened Nirich NiTi-20Zr high temperature shape memory alloy. Materials & Design, 2021, 202: 109533

    Article  Google Scholar 

  7. Ruggiero A, Tricarico L, Olabi A G, Benyounis K Y. Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316. Optics & Laser Technology, 2011, 43(1): 82–90

    Article  Google Scholar 

  8. Oliveira J P, Shen J J, Zeng Z, Park J M, Choi Y T, Schell N, Maawad E, Zhou N, Kim H S. Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel. Scripta Materialia, 2022, 206: 114219

    Article  Google Scholar 

  9. Jiang P, Wang C C, Zhou Q, Shao X Y, Shu L S, Li X B. Optimization of laser welding process parameters of stainless steel 316L using FEM, Kriging and NSGA-II. Advances in Engineering Software, 2016, 99: 147–160

    Article  Google Scholar 

  10. Assunção E, Quintino L, Miranda R. Comparative study of laser welding in tailor blanks for the automotive industry. The International Journal of Advanced Manufacturing Technology, 2010, 49(1): 123–131

    Article  Google Scholar 

  11. Kumar C, Das M, Paul C P, Bindra K S. Comparison of bead shape, microstructure and mechanical properties of fiber laser beam welding of 2 mm thick plates of Ti-6Al-4V alloy. Optics & Laser Technology, 2018, 105: 306–321

    Article  Google Scholar 

  12. Sokolov M, Salminen A. Improving laser beam welding efficiency. Engineering, 2014, 6(09): 559–571

    Article  Google Scholar 

  13. Abioye T E, Mustar N, Zuhailawati H, Suhaina I. Prediction of the tensile strength of aluminium alloy 5052-H32 fibre laser weldments using regression analysis. The International Journal of Advanced Manufacturing Technology, 2019, 102(5): 1951–1962

    Article  Google Scholar 

  14. Zhang M J, Liu T T, Hu R Z, Mu Z Y, Chen S, Chen G Y. Understanding root humping in high-power laser welding of stainless steels: a combination approach. The International Journal of Advanced Manufacturing Technology, 2020, 106(11): 5353–5364

    Article  Google Scholar 

  15. Shanthos Kumar G, Raghukandan K, Saravanan S, Sivagurumanikandan N. Optimization of parameters to attain higher tensile strength in pulsed Nd: YAG laser welded Hastelloy C-276-Monel 400 sheets. Infrared Physics & Technology, 2019, 100: 1–10

    Article  Google Scholar 

  16. Du Y, Mukherjee T, DebRoy T. Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects. Applied Materials Today, 2021, 24: 101123

    Article  Google Scholar 

  17. Huang Z, Cao H J, Zeng D, Ge W W, Duan C M. A carbon efficiency approach for laser welding environmental performance assessment and the process parameters decision-making. The International Journal of Advanced Manufacturing Technology, 2021, 114(7): 2433–2446

    Article  Google Scholar 

  18. Mackwood A P, Crafer R C. Thermal modelling of laser welding and related processes: a literature review. Optics & Laser Technology, 2005, 37(2): 99–115

    Article  Google Scholar 

  19. Peng S T, Li T, Zhao J L, Lv S P, Tan G Z, Dong M M, Zhang H C. Towards energy and material efficient laser cladding process: modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II. Journal of Cleaner Production, 2019, 227: 58–69

    Article  Google Scholar 

  20. Akbari M, Shojaeefard M H, Asadi P, Khalkhali A. Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2317–2333

    Article  Google Scholar 

  21. Akbari M, Asadi P, Zolghadr P, Khalkhali A. Multicriteria optimization of mechanical properties of aluminum composites reinforced with different reinforcing particles type. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2018, 232(3): 323–337

    Article  Google Scholar 

  22. Srivastava S, Garg R K. Process parameter optimization of gas metal arc welding on IS:2062 mild steel using response surface methodology. Journal of Manufacturing Processes, 2017, 25: 296–305

    Article  Google Scholar 

  23. Rong Y M, Zhang Z, Zhang G J, Yue C, Gu Y F, Huang Y, Wang C M, Shao X Y. Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA. Optics and Lasers in Engineering, 2015, 67: 94–104

    Article  Google Scholar 

  24. Wang S H, Zhu L D, Fuh J Y H, Zhang H Q, Yan W T. Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition. Optics and Lasers in Engineering, 2020, 127: 105950

    Article  Google Scholar 

  25. Wang G G, Shan S. Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 2007, 129(4): 370–380

    Article  Google Scholar 

  26. Goel T, Haftka R T, Shyy W, Queipo N V. Ensemble of surrogates. Structural and Multidisciplinary Optimization, 2007, 33(3): 199–216

    Article  Google Scholar 

  27. Younis A, Dong Z M. Trends, features, and tests of common and recently introduced global optimization methods. Engineering Optimization, 2010, 42(8): 691–718

    Article  MathSciNet  Google Scholar 

  28. Dong H C, Li C S, Song B W, Wang P. Multi-surrogate-based Differential Evolution with multi-start exploration (MDEME) for computationally expensive optimization. Advances in Engineering Software, 2018, 123: 62–76

    Article  Google Scholar 

  29. Díaz-Manríquez A, Toscano G, Coello Coello C A. Comparison of metamodeling techniques in evolutionary algorithms. Soft Computing, 2017, 21(19): 5647–5663

    Article  Google Scholar 

  30. Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 2001, 23(1): 1–13

    Article  Google Scholar 

  31. Acar E. Effect of error metrics on optimum weight factor selection for ensemble of metamodels. Expert Systems with Applications, 2015, 42(5): 2703–2709

    Article  MathSciNet  Google Scholar 

  32. Song X G, Sun G Y, Li G Y, Gao W Z, Li Q. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Structural and Multidisciplinary Optimization, 2013, 47(2): 221–231

    Article  MathSciNet  MATH  Google Scholar 

  33. Gao Z M, Shao X Y, Jiang P, Cao L C, Zhou Q, Yue C, Liu Y, Wang C M. Parameters optimization of hybrid fiber laser-arc butt welding on 316L stainless steel using kriging model and GA. Optics & Laser Technology, 2016, 83: 153–162

    Article  Google Scholar 

  34. Ayoola W A, Suder W J, Williams S W. Parameters controlling weld bead profile in conduction laser welding. Journal of Materials Processing Technology, 2017, 249: 522–530

    Article  Google Scholar 

  35. Huang Y J, Gao X D, Ma B, Liu G Q, Zhang N F, Zhang Y X, You D Y. Optimization of weld strength for laser welding of steel to PMMA using Taguchi design method. Optics & Laser Technology, 2021, 136: 106726

    Article  Google Scholar 

  36. Cai X W, Qiu H B, Gao L, Li X K, Shao X Y. A hybrid global optimization method based on multiple metamodels. Engineering Computations, 2018, 35(1): 71–90

    Article  Google Scholar 

  37. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007, 39(3): 459–471

    Article  MathSciNet  MATH  Google Scholar 

  38. Jia H F, Miao H Z, Tian G D, Zhou M C, Feng Y X, Li Z W, Li J C. Multiobjective bike repositioning in bike-sharing systems via a modified artificial bee colony algorithm. IEEE Transactions on Automation Science and Engineering, 2020, 17(2): 909–920

    Article  Google Scholar 

  39. Wang W J, Tian G D, Chen M N, Tao F, Zhao C Y, AI-Ahmari A, Li Z W, Jiang Z G. Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. Journal of Cleaner Production, 2020, 245: 118714

    Article  Google Scholar 

  40. Verma B K, Kumar D. A review on artificial bee colony algorithm. International Journal of Engineering and Technology, 2013, 2(3): 175–186

    Article  MathSciNet  Google Scholar 

  41. Ren Y P, Jin H Y, Zhao F, Qu T, Meng L L, Zhang C Y, Zhang B, Wang G, Sutherland J W. A multiobjective disassembly planning for value recovery and energy conservation from end-of-life products. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 791–803

    Article  Google Scholar 

  42. Manikya Kanti K, Srinivasa Rao P. Prediction of bead geometry in pulsed GMA welding using back propagation neural network. Journal of Materials Processing Technology, 2008, 200(1–3): 300–305

    Article  Google Scholar 

  43. Ragavendran M, Chandrasekhar N, Ravikumar R, Saxena R, Vasudevan M, Bhaduri A K. Optimization of hybrid laser—TIG welding of 316LN steel using response surface methodology (RSM). Optics and Lasers in Engineering, 2017, 94: 27–36

    Article  Google Scholar 

  44. Zhang F, Zhou T T. Process parameter optimization for laser-magnetic welding based on a sample-sorted support vector regression. Journal of Intelligent Manufacturing, 2019, 30(5): 2217–2230

    Article  Google Scholar 

  45. Jiang P, Cao L C, Zhou Q, Gao Z M, Rong Y M, Shao X Y. Optimization of welding process parameters by combining kriging surrogate with particle swarm optimization algorithm. The International Journal of Advanced Manufacturing Technology, 2016, 86(9): 2473–2483

    Article  Google Scholar 

  46. Soltani H M, Tayebi M. Comparative study of AISI 304L to AISI 316L stainless steels joints by TIG and Nd:YAG laser welding. Journal of Alloys and Compounds, 2018, 767: 112–121

    Article  Google Scholar 

  47. Shao J Y, Yu G, He X L, Li S X, Chen R, Zhao Y. Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Optics & Laser Technology, 2019, 119: 105662

    Article  Google Scholar 

  48. Yang Z Y, Jin K N, Fang H, He J S. Multi-scale simulation of solidification behavior and microstructure evolution during vacuum electron beam welding of Al-Cu alloy. International Journal of Heat and Mass Transfer, 2021, 172: 121156

    Article  Google Scholar 

  49. Kumar N, Mukherjee M, Bandyopadhyay A. Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels. Optics & Laser Technology, 2017, 88: 24–39

    Article  Google Scholar 

  50. Lenart R, Eshraghi M. Modeling columnar to equiaxed transition in directional solidification of Inconel 718 alloy. Computational Materials Science, 2020, 172: 109374

    Article  Google Scholar 

  51. de Souza Silva E M F, da Fonseca G S, Ferreira E A. Microstructural and selective dissolution analysis of 316L austenitic stainless steel. Journal of Materials Research and Technology, 2021, 15: 4317–4329

    Article  Google Scholar 

  52. Ragavendran M, Vasudevan M. Laser and hybrid laser welding of type 316L(N) austenitic stainless steel plates. Materials and Manufacturing Processes, 2020, 35(8): 922–934

    Article  Google Scholar 

  53. Mohammed G R, Ishak M, Aqida S N, Abdulhadi H A. Effects of heat input on microstructure, corrosion and mechanical characteristics of welded austenitic and duplex stainless steels: a review. Metals, 2017, 7(2): 39

    Article  Google Scholar 

  54. Huang W D, Geng X G, Zhou Y H. Primary spacing selection of constrained dendritic growth. Journal of Crystal Growth, 1993, 134(1–2): 105–115

    Google Scholar 

  55. Kurz W, Fisher D J. Dendrite growth at the limit of stability: tip radius and spacing. Acta Metallurgica, 1981, 29(1): 11–20

    Article  Google Scholar 

  56. McCartney D G, Hunt J D. Measurements of cell and primary dendrite arm spacings in directionally solidified aluminium alloys. Acta Metallurgica, 1981, 29(11): 1851–1863

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Project of International Cooperation and Exchanges NSFC (Grant No. 51861165202), the National Natural Science Foundation of China (Grant Nos. 51575211, 51705263, and 51805330), and the 111 Project of China (Grant No. B16019). The authors thank the technical support from the Experiment Center for Advanced Manufacturing and Technology in the School of Mechanical Science & Engineering of HUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhang, C., Lian, K. et al. Processing parameter optimization of fiber laser beam welding using an ensemble of metamodels and MOABC. Front. Mech. Eng. 17, 47 (2022). https://doi.org/10.1007/s11465-022-0703-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-022-0703-5

Keywords

Navigation