Skip to main content
Log in

Creep life assessment of aero-engine recuperator based on continuum damage mechanics approach

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The creep life of an aeroengine recuperator is investigated in terms of continuum damage mechanics by using finite element simulations. The effects of the manifold wall thickness and creep properties of brazing filler metal on the operating life of the recuperator are analyzed. Results show that the crack initiates from the brazing filler metal located on the outer surface of the manifold with the wall thickness of 2 mm and propagates throughout the whole region of the brazing filler metal when the creep time reaches 34900 h. The creep life of the recuperator meets the requirement of 40000 h continuous operation when the wall thickness increases to 3.5 mm, but its total weight increases by 15%. Decreasing the minimum creep strain rate with the enhancement of the creep strength of the brazing filler metal presents an obvious effect on the creep life of the recuperator. At the same stress level, the creep rupture time of the recuperator is enhanced by 13 times if the mismatch between the minimum creep rate of the filler and base metal is reduced by 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, q :

Material constants in the Liu—Murakami damage evolution model

B :

Coefficient in the secondary creep stage

B 0, m :

Coefficients in the primary creep stage

c :

Diffusion exponent in material properties

D :

Inner diameter of the manifold

L :

Length of the manifold

M :

Initial material properties

Mat :

Material properties of the diffusion zone

n 0, n :

Stress exponents in the primary and secondary creep stage, respectively

p :

Rupture stress exponent in stress-based models

S :

Wall thickness of the manifold

S ij :

Deviatoric stress

y :

Thickness of the diffusion zone

ω :

Damage state parameter ranging from 0 to 1

α :

Material constant of multiaxiality ranging from 0 to 1

ε c :

Creep strain

ε e :

Elastic strain

ε p :

Plastic strain

ε th :

Thermal strain

ε total :

Total strain

\({\dot \varepsilon _{\min}}\) :

Minimum creep strain rate

σ eq :

von Mises stress

σ 1 :

Maximum principal stress

σ r :

Reference stress under multiaxial creep (equivalent stress)

References

  1. Salpingidou C, Misirlis D, Vlahostergios Z, Flouros M, Donus F, Yakinthos K. Conceptual design study of a geared turbofan and an open rotor aero engine with intercooled recuperated core. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(14): 2713–2720

    Article  Google Scholar 

  2. Ricco P, Skote M, Leschziner M A. A review of turbulent skinfriction drag reduction by near-wall transverse forcing. Progress in Aerospace Sciences, 2021, 123: 100713

    Article  Google Scholar 

  3. Wileman A J, Aslam S, Perinpanayagam S. A road map for reliable power electronics for more electric aircraft. Progress in Aerospace Sciences, 2021, 127: 100739

    Article  Google Scholar 

  4. Graver B, Rutherford D, Zheng S. CO2 emissions from commercial aviation: 2013, 2018, and 2019. Available from International Council on Clean Transportation website, 2020

  5. Ferrari M L, Sorce A, Pascenti M, Massardo A F. Recuperator dynamic performance: experimental investigation with a microgas turbine test rig. Applied Energy, 2011, 88(12): 5090–5096

    Article  Google Scholar 

  6. McDonald C F, Massardo A F, Rodgers C, Stone A. Recuperated gas turbine aeroengines, Part I: early development activities. Aircraft Engineering and Aerospace Techology, 2008, 80(2): 139–157

    Article  Google Scholar 

  7. Boggia S, Rüd K. Intercooled recuperated gas turbine engine concept. In: Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson: AIAA, 2005, 4192

  8. Rolt A, Baker N. Intercooled turbofan engine design and technology research in the EU framework 6 NEWAC programme. In: Proceedings of International Symposium on Air Breathing Engines. Montreal: ISABE, 2009, 1351–1360

  9. Zhang C Y, Gümmer V. Performance assessment of recuperated rotorcraft powerplants: trade-off between fuel economy and weight penalty for both tubular and primary surface recuperators. Applied Thermal Engineering, 2020, 164: 114443

    Article  Google Scholar 

  10. Kyprianidis K G, Rolt A M. On the optimization of a geared fan intercooled core engine design. Journal of Engineering for Gas Turbines and Power, 2015, 137(4): 041201

    Article  Google Scholar 

  11. Salpingidou C, Vlahostergios Z, Misirlis D, Donnerhack S, Flouros M, Goulas A, Yakinthos K. Thermodynamic analysis of recuperative gas turbines and aero engines. Applied Thermal Engineering, 2017, 124: 250–260

    Article  Google Scholar 

  12. Vlahostergios Z, Misirlis D, Flouros M, Salpingidou C, Donnerhack S, Goulas A, Yakinthos K. Development, numerical investigation and experimental validation of a new recuperator design for aero engines applications. In: Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference & Exposition. Charlotte: ASME, 2017, V02BT41A035

  13. Kormann M, Schaber R. An intercooled recuperative aero engine for regional jets. In: Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf: ASME, 2014, V03AT07A021

  14. Schoenenborn H, Ebert E, Simon B, Storm P. Thermomechanical design of a heat exchanger for a recuperative aeroengine. Journal of Engineering for Gas Turbines and Power, 2006, 128(4): 736–744

    Article  Google Scholar 

  15. Goulas A, Donnerhack S, Flouros M, Misirlis D, Vlahostergios Z, Yakinthos K. Thermodynamics cycle analysis, pressure loss, and heat transfer assessment of a recuperative system for aero-engines. Journal of Engineering for Gas Turbines and Power, 2015, 137(4): 041205

    Article  Google Scholar 

  16. Zhang Y C, Jiang W C, Tu S T, Zhang X C, Zhou G Y. Analysis of creep crack growth behavior of the brazed joint using continuum damage mechanics approach. In: Proceedings of the ASME 2018 Pressure Vessels and Piping Conference. Prague: ASME, 2018, 51678: V06AT06A062

  17. Luo Y, Jiang W C, Zhang Y C, Zhou F, Tu S T. A new damage evolution model to estimate the creep fracture behavior of brazed joint under multiaxial stress. International Journal of Mechanical Sciences, 2018, 149: 178–189

    Article  Google Scholar 

  18. Tu S T. Emerging challenges to structural integrity technology for high-temperature applications. Frontiers of Mechanical Engineering in China, 2007, 2(4): 375–387

    Article  Google Scholar 

  19. Tu S T, Zhou G Y. Creep of brazed plate-fin structures in high temperature compact heat exchangers. Frontiers of Mechanical Engineering in China, 2009, 4(4): 355–362

    Article  Google Scholar 

  20. Zhang D J, Zeng M, Wang J W, Wang Q W. Creep analysis of cross wavy primary surface recuperator for microturbine system. In: Proceedings of ASME Turbo Expo: Power for Land, Sea, & Air. Berlin: ASME, 2008, 899–904

  21. Jiang W C, Gong J M, Chen H, Tu S T. The effect of filler metal thickness on residual stress and creep for stainless-steel plate—fin structure. International Journal of Pressure Vessels and Piping, 2008, 85(8): 569–574

    Article  Google Scholar 

  22. Shi D Q, Dong C L, Yang X G, Zhang L, Hou J B, Liu Y. Experimental investigations on creep rupture strength and failure mechanism of vacuum brazed joints of a DS superalloy at elevated temperature. Materials Science and Engineering: A, 2012, 545: 162–167

    Article  Google Scholar 

  23. Ma T, Chen Y T, Zeng M, Wang Q W. Stress analysis of internally finned bayonet tube in a high temperature heat exchanger. Applied Thermal Engineering, 2012, 43: 101–108

    Article  Google Scholar 

  24. Chen G, Wang G Z, Xuan F Z, Tu S T. Mismatch effect in creep properties on creep crack growth behavior in welded joints. Materials & Design, 2014, 63: 600–608

    Article  Google Scholar 

  25. Cadek J. Creep in Metallic Materials. Amsterdam: Elsevier, 1988, 372–692

    Google Scholar 

  26. Kassner M E. Fundamentals of Creep in Metals and Alloys. 3rd ed. Oxford: Butterworth-Heinemann, 2015, 261–273

    Book  Google Scholar 

  27. Sklenička V, Kuchařová K, Král P, Kvapilová M, Svobodová M, Čmakal J. The effect of hot bending and thermal ageing on creep and microstructure evolution in thick-walled P92 steel pipe. Materials Science and Engineering: A, 2015, 644: 297–309

    Article  Google Scholar 

  28. Vrchovinsky V, Zrnik J, Kvackaj T, Wangyao P. Effect of final cold rolled microstructures on creep deformation behavior in nickel base alloy. Journal of Metals, Materials and Minerals, 2005, 15(2): 57–68

    Google Scholar 

  29. Zhang Y C, Jiang W C, Tu S T, Zhang X C, Ye Y J. Creep crack growth behavior analysis of the 9Cr-1Mo steel by a modified creep-damage model. Materials Science and Engineering: A, 2017, 708: 68–76

    Article  Google Scholar 

  30. Zhang Y C, Yu X T, Jiang W C, Tu S T, Zhang X C. Elastic modulus and hardness characterization for microregion of Inconel 625/BNi-2 vacuum brazed joint by high temperature nanoindentation. Vacuum, 2020, 181: 109582

    Article  Google Scholar 

  31. Zhang Y C. Creep damage and crack growth analysis of the brazed joint under multi-axial stress state. Dissertation for the Doctoral Degree. Shanghai: East China University of Science and Technology, 2016 (in Chinese)

    Google Scholar 

  32. Lai H S. Estimation of Ct of functionally graded materials under small scale creep stage. Composite Structures, 2016, 138: 352–360

    Article  Google Scholar 

  33. Lee K H. Analysis of a propagating crack tip in orthotopic functionally graded materials. Composites Part B: Engineering, 2016, 84: 83–97

    Article  Google Scholar 

  34. Zhang Y C, Jiang W C, Tu S T, Wen J F, Woo W. Using short-time creep relaxation effect to decrease the residual stress in the bonded compliant seal of planar solid oxide fuel cell—a finite element simulation. Journal of Power Sources, 2014, 255: 108–115

    Article  Google Scholar 

  35. Hyde T H, Xia L, Becker A A. Prediction of creep failure in aeroengine materials under multi-axial stress states. International Journal of Mechanical Sciences, 1996, 38(4): 385–401, 403

    Article  Google Scholar 

  36. Hyde C J, Hyde T H, Sun W, Becker A A. Damage mechanics based predictions of creep crack growth in 316 stainless steel. Engineering Fracture Mechanics, 2010, 77(12): 2385–2402

    Article  Google Scholar 

  37. Kim N H, Oh C S, Kim Y J, Davies C M, Nikbin K, Dean D W. Creep failure simulations of 316H at 550 °C: Part II—Effects of specimen geometry and loading mode. Engineering Fracture Mechanics, 2013, 105: 169–181

    Article  Google Scholar 

  38. Mehmanparast A, Davies C M, Webster G A, Nikbin K M. Creep crack growth rate predictions in 316H steel using stress dependent creep ductility. Materials at High Temperatures, 2014, 31(1): 84–94

    Article  Google Scholar 

  39. Hyde T H, Saber M, Sun W. Testing and modelling of creep crack growth in compact tension specimens from a P91 weld at 650 °C. Engineering Fracture Mechanics, 2010, 77(15): 2946–2957

    Article  Google Scholar 

  40. Zhang Y C, Jiang W C, Tu S T, Zhang X C, Ye Y J, Wang R Z. Experimental investigation and numerical prediction on creep crack growth behavior of the solution treated Inconel 625 superalloy. Engineering Fracture Mechanics, 2018, 199: 327–342

    Article  Google Scholar 

  41. Zhao L, Xu L Y, Han Y D, Jing H Y. Quantifying the constraint effect induced by specimen geometry on creep crack growth behavior in P92 steel. International Journal of Mechanical Sciences, 2015, 94–95: 63–74

    Article  Google Scholar 

  42. Yu Z Y, Wang X M, Liang H, Li Z X, Li L, Yue Z F. Thickness debit effect in Ni-based single crystal superalloys at different stress levels. International Journal of Mechanical Sciences, 2020, 170: 105357

    Article  Google Scholar 

  43. Kurata Y, Saito T, Tsuji H, Takatsu T, Shindo M, Nakajima H. Development of a filler metal for weldments of a Ni-Cr-W superalloy with high creep strength. JSME International Journal Series A: Solid Mechanics and Material Engineering, 2002, 45(1): 104–109

    Article  Google Scholar 

  44. Mayr P, Cerjak H, Jochum C, Pasternak J. Long-term creep behaviour of E911 heat resistant 9% Cr steel weldments fabricated with filler metals of different creep strength. In: Proceedings of ASME Pressure Vessels and Piping Conference. San Antonio: ASME, 2007, 675–680

    Google Scholar 

  45. Baumgartner S, Posch G, Mayr P. Welding advanced martensitic creep-resistant steels with boron containing filler metal. Welding in the World, 2012, 56(7): 2–9

    Article  Google Scholar 

  46. Norton F H. The Creep of Steel at High Temperature. New York: McGraw-Hill, 1929

    Google Scholar 

  47. Kim Y K, Kim D, Kim H K, Oh C S, Lee B J. An intermediate temperature creep model for Ni-based superalloys. International Journal of Plasticity, 2016, 79: 153–175

    Article  Google Scholar 

  48. Ma H L, Zhao B G, Wu G Z, Li Z, Gao Y L. A SnBiAgIn solder alloy with exceptional mechanical properties by rapid quenching. Journal of Materials Science: Materials in Electronics, 2021, 32(6): 8167–8173

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 51675181). The authors are also grateful for the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 2019-01-07-00-02-E00068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoyan Zhou or Shantung Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, P., Zhang, Y., Zhou, G. et al. Creep life assessment of aero-engine recuperator based on continuum damage mechanics approach. Front. Mech. Eng. 17, 46 (2022). https://doi.org/10.1007/s11465-022-0702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-022-0702-6

Keywords

Navigation