Skip to main content
Log in

Digital switched hydraulics

  • Short Communication
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Scheidl R, Linjama M, Schmidt S. Is the future of fluid power digital? Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 2012, 226(6): 721–723

    Google Scholar 

  2. Yang H Y, Pan M. Engineering research in fluid power: A review. Journal of Zhejiang University. Science A, 2015, 16(6): 427–442

    Article  Google Scholar 

  3. Linjama M, Laamanen A, Vilenius M. Is it time for digital hydraulics? In: Proceedings of the 8th Scandinavian International Conference on Fluid Power. Tampere, 2003, 347–366

    Google Scholar 

  4. Linjama M. Digital fluid power: State of the art. In: Proceedings of the 12th Scandinavian International Conference on Fluid Power. Tampere, 2011, 18–20

    Google Scholar 

  5. The Artemis Intelligent Power Ltd. Digital Displacement hydraulics. 2017. Retrieved from http://www.artemisip.com/

  6. Digital Hydraulic LLC. Digital Hydraulic Transformer. 2017. Retrieved from http://www.digitalhydraulic.com

  7. Norrhydro Ltd. NorrDigi System Solution. 2017. Retrieved from http://www.norrhydro.com

  8. Scheidl R, Kogler H, Winkler B. Hydraulic switching controlobjectives, concepts, challenges and potential applications. Hidraulica, 2013, (1): 7–18

    Google Scholar 

  9. Winkler B. Development of a fast low-cost switching valve for big flow rates. In: Proceedings of the 3rd FPNI-PhD Symposium on Fluid Power. Terrassa, 2004, 599–606

    Google Scholar 

  10. Winkler B, Ploeckinger A, Scheidl R. A novel piloted fast switching multi poppet valve. International Journal of Fluid Power, 2010, 11 (3): 7–14

    Article  Google Scholar 

  11. Kogler H, Scheidl R. Two basic concepts of hydraulic switching converters. In: Proceedings of the First Workshop on Digital Fluid Power. Tampere, 2008, 113–128

    Google Scholar 

  12. Manhartsgruber B, Mikota G, Scheidl R. Modelling of a switching control hydraulic system. Mathematical and Computer Modelling of Dynamical Systems, 2005, 11(3): 329–344

    Article  MATH  Google Scholar 

  13. Scheidl R, Manhartsgruber B, Kogler H. Mixed time-frequency domain simulation of a hydraulic inductance pipe with a check valve. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, 2011, 225(10): 2413–2421

    Article  Google Scholar 

  14. Kogler H, Scheidl R, Ehrentraut M, et al. A compact hydraulic switching converter for robotic applications. In: Proceedings of Bath/ASME Symposium on Fluid Power and Motion Control. Bath: ASME, 2010, 55–68

    Google Scholar 

  15. Scheidl R, Garstenauer M, Manhartsgruber B. Switching Type Control of Hydraulic Drives—A Promising Perspective for Advanced Actuation in Agricultural Machinery. SAE Technical Paper 2000–01-2559, 2000

    Google Scholar 

  16. Kogler H. The hydraulic buck converter—Conceptual study and experiments. Dissertation for the Doctoral Degree. Linz: University Linz, 2012

    Google Scholar 

  17. Kogler H, Scheidl R. Energy efficient linear drive axis using a hydraulic switching converter. Journal of Dynamic Systems, Measurement, and Control, 2016, 138(9): 091010

    Article  Google Scholar 

  18. Johnston N, Pan M, Kudzma S. An enhanced transmission line method for modelling laminar flow of liquid in pipelines. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 2014, 228(4): 193–206

    Article  Google Scholar 

  19. Pan M, Johnston D, Plummer A, et al. Theoretical and experimental studies of a switched inertance hydraulic system. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 2014, 228(1): 12–25

    Article  Google Scholar 

  20. Pan M, Johnston D N, Plummer A R, et al. Theoretical and experimental studies of a switched inertance hydraulic system including switching transition dynamics, non-linearity and leakage. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 2014, 228(10): 802–815

    Article  Google Scholar 

  21. Pan M, Johnston N, Robertson J, et al. Experimental investigation of a switched inertance hydraulic system with a high-speed rotary valve. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(12): 121003

    Article  Google Scholar 

  22. Pan M. Adaptive control of a piezoelectric valve for fluid-borne noise reduction in a hydraulic buck converter. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(8): 081007

    Article  Google Scholar 

  23. Sell N, Johnston D, Plummer A, et al. A linear valve actuated switched inertance hydraulic system. In: Proceedings of the 14th Scandinavian International Conference on Fluid Power. 2015, 49430

    Google Scholar 

  24. Pan M, Plummer A, El Agha A. Theoretical and experimental studies of a switched inertance hydraulic system in a four-port high speed switching valve configuration. Energies, 2017, 10(6): 780

    Article  Google Scholar 

  25. Pan M. A global optimisation of a switched inertance hydraulic system based on genetic algorithm. In: Proceedings of the 15th Scandinavian International Conference on Fluid Power. Linköping, 2017, 302–308

    Google Scholar 

  26. Brown F T. Switched reactance hydraulics: A new way to control fluid power. In: Proceedings of the National Conference on Fluid Power. Chicago, 1987, 25–34

    Google Scholar 

  27. Johnston D N. A switched inertance device for efficient control of pressure and flow. In: Proceedings of Bath/ASME Fluid Power and Motion Control Symposium. New York: ASME, 2009, 1–8

    Google Scholar 

  28. Wang F, Gu L, Chen Y. A continuously variable hydraulic pressure converter based on high-speed on-off valves. Mechatronics, 2011, 21(8): 1298–1308

    Article  Google Scholar 

  29. Wang P, Kudzma S, Johnston D N, et al. The influence of wave effects on digital switching valve performance. In: Proceedings of the Fourth Workshop on Digital Fluid Power. Linz, 2011

    Google Scholar 

  30. Van de Ven J D. On fluid compressibility in switch-mode hydraulic circuits—Part I: Modelling and analysis. Journal of Dynamic Systems, Measurement, and Control, 2012, 135(2): 021013

    Article  Google Scholar 

  31. Wiens T K. Analysis and mitigation of valve switching losses in switched inertance converters. In: Proceedings of ASME/Bath 2015 Symposium on Fluid Power and Motion Control. Chicago: ASME, 2015, V001T01A053

    Google Scholar 

  32. Rannow M B, Tu H C, Li P Y, et al. Software enabled variable displacement pumps—Experimental studies. In: Proceedings of the 2006 ASME-IMECE. Chicago: ASME, 2006, IMECE2006-14973

    Google Scholar 

  33. Tu H C, Rannow MB, Van de Ven J D, et al. High speed rotary pulse width modulated on/off valve. In: Proceedings of the 2007 ASMEIMECE. Seattle, 2007, IMECE2007-42559

    Google Scholar 

  34. Wiens T. Analysis and mitigation of valve switching losses in switched inertance converters. In: Proceedings of ASME/Bath 2015 Symposium on Fluid Power and Motion Control. Chicago: ASME, 2015, FPMC2015-9600

    Google Scholar 

  35. Rannow MB, Li P Y. Soft switching approach to reducing transition losses in an on/off hydraulic valve. Journal of Dynamic Systems Measurement & Control, 2012, 134(6): 064501

    Article  Google Scholar 

  36. Yudell A C, Van de Ven J D. Soft switching in switched inertance hydraulic circuits. In: Proceedings of Bath/ASME 2016 Symposium on Fluid Power and Motion Control. Bath: ASME, 2016, V001T01A040

    Google Scholar 

  37. Li P Y, Li C Y, Chase T R. Software enabled variable displacement pumps. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition. Orlando: ASME, 2005, 12: 63–72

    Google Scholar 

  38. Brown F T, Tentarelli S C, Ramachandran S. A hydraulic rotary switched inertance servo-transformer. Journal of Dynamic Systems, Measurement, and Control, 1988, 110(2): 144–150

    Article  Google Scholar 

  39. Liaw C J, Brown F T. Nonlinear dynamics of an electrohydraulic flapper nozzle valve. Journal of Dynamic Systems, Measurement, and Control, 1990, 112(2): 298–304

    Article  Google Scholar 

  40. Yokota S, Akutu K. A fast-acting electro-hydraulic digital transducer: A poppet-type on-off valve using a multilayered piezoelectric device. JSME International Journal. Series 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 1991, 34(4): 489–495

    Article  Google Scholar 

  41. Cui P, Burton R T, Ukrainetz P R. Development of A High Speed On/Off Valve. SAE Technical Paper 911815, 1991

    Google Scholar 

  42. Kajima T, Kawamura Y. Development of a high-speed solenoid valve: Investigation of solenoids. IEEE Transactions on Industrial Electronics, 1995, 42(1): 1–8

    Article  Google Scholar 

  43. Winkler B, Scheidl R. Optimization of a fast switching valve for big flow rates. In: Proceedings of Bath Workshop on Power Transmission and Motion Control. 2006, 387–399

    Google Scholar 

  44. Tu H, Rannow M B, Wang M, et al. Modeling and validation of a high speed rotary PWM on/off valve. In: Proceedings of the ASME 2009 Dynamic Systems and Control Conference. Hollywood: ASME, 2009, 629–636

    Chapter  Google Scholar 

  45. Katz A A, Van de Ven J D. Design of a high-speed on-off valve. In: Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Lake Buena Vista: ASME, 2009, 237–246

    Google Scholar 

  46. Sell N. Control of a fast switching valve for digital hydraulics. Dissertation for the Doctoral Degree. Bath: University of Bath, 2015

    Google Scholar 

  47. Sell N, Johnston D, Plummer A, et al. Development of a position controlled digital hydraulic valve. In: Proceedings of the ASME/BATH 2015 Symposium on Fluid Power and Motion Control. Chicago: ASME, 2015, V001T01A008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, M., Plummer, A. Digital switched hydraulics. Front. Mech. Eng. 13, 225–231 (2018). https://doi.org/10.1007/s11465-018-0509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-018-0509-7

Keywords

Navigation