Skip to main content
Log in

Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives

  • Review Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rittinghouse J W, Ransome J F. Cloud Computing: Implementation, Management, and Security. Boca Raton: CRC Press, 2016

    Google Scholar 

  2. Zhang Y F, Zhang G, Wang J Q, et al. Real-time information capturing and integration framework of the internet of manufacturing things. International Journal of Computer Integrated Manufacturing, 2015, 28(8): 811–822

    Article  Google Scholar 

  3. Liu C, Jiang P. A cyber-physical system architecture in shop floor for intelligent manufacturing. Procedia CIRP, 2016, 56: 372–377

    Article  Google Scholar 

  4. Kagermann H, Helbig J, Hellinger A, et al. Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion, 2013

    Google Scholar 

  5. Liu Y, Xu X. Industry 4.0 and cloud manufacturing: A comparative analysis. Journal of Manufacturing Science and Engineering, 2016, 139(3): 034701

    Article  Google Scholar 

  6. Lu Y. Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 2017, 6: 1–10

    Article  Google Scholar 

  7. Thames L, Schaefer D. Industry 4.0: An overview of key benefits, technologies, and challenges. In: Thames L, Schaefer D, eds. Cybersecurity for Industry 4.0. Cham: Springer, 2017, 1–33

  8. Kusiak A. Smart manufacturing. International Journal of Production Research, 2017, 1–10 (in press)

    Google Scholar 

  9. Penas O, Plateaux R, Patalano S, et al. Multi-scale approach from mechatronic to cyber-physical systems for the design of manufacturing systems. Computers in Industry, 2017, 86: 52–69

    Article  Google Scholar 

  10. Zawadzki P, Żywicki K. Smart product design and production control for effective mass customization in the Industry 4.0 concept. Management and Production Engineering Review, 2016, 7(3): 105–112

    Article  Google Scholar 

  11. Bokrantz J, Skoogh A, Berlin C, et al. Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030. International Journal of Production Economics, 2017, 191: 154–169

    Article  Google Scholar 

  12. Xia T, Xi L. Manufacturing paradigm-oriented PHM methodologies for cyber-physical systems. Journal of Intelligent Manufacturing, 2017, 1–14 (in press)

    Google Scholar 

  13. Xu X. Machine Tool 4.0 for the new era of manufacturing. International Journal of Advanced Manufacturing Technology, 2017, 1–8 (in press)

    Google Scholar 

  14. Nienke S, Frölian H, Zeller V, et al. Energy-Management 4.0: Roadmap towards the self-optimising production of the future. In: Proceedings of the 6th International Conference on Informatics, Environment, Energy and Applications. 2017, 6–10

    Google Scholar 

  15. Hofmann E, Rüsch M. Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 2017, 89: 23–34

    Article  Google Scholar 

  16. Kolarevic B. Architecture in the digital age: Design and manufacturing. Abingdon: Taylor & Francis, 2004

    Google Scholar 

  17. Zhong R Y, Dai Q Y, Qu T, et al. RFID-enabled real-time manufacturing execution system for mass-customization production. Robotics and Computer-integrated Manufacturing, 2013, 29 (2): 283–292

    Article  Google Scholar 

  18. Park H S, Tran N H. Development of a smart machining system using self-optimizing control. International Journal of Advanced Manufacturing Technology, 2014, 74(9–12): 1365–1380

    Article  Google Scholar 

  19. Janak L, Hadas Z. Machine tool health and usage monitoring system: An intitial analyses. MM Science Journal, 2015, 2015(4): 794–798

    Article  Google Scholar 

  20. Qiu X, Luo H, Xu G Y, et al. Physical assets and service sharing for IoT-enabled supply hub in industrial park (SHIP). International Journal of Production Economics, 2015, 159: 4–15

    Article  Google Scholar 

  21. Wang M L, Qu T, Zhong R Y, et al. A radio frequency identification-enabled real-time manufacturing execution system for one-of-a-kind production manufacturing: A case study in mould industry. International Journal of Computer Integrated Manufacturing, 2012, 25(1): 20–34

    Article  Google Scholar 

  22. Stich V, Hering N, Meißner J. Cyber physical production control: Transparency and high resolution in production control. IFIP Advances in Information and Communication Technology, 2015, 459: 308–315

    Article  Google Scholar 

  23. Makarov O, Langmann R, Nesteresko S, et al. Problems of the time deterministic in applications for process control from the cloud. International Journal of Online Engineering, 2014, 10(4): 70–73

    Article  Google Scholar 

  24. Wang L H. Machine availability monitoring and machining process planning towards cloud manufacturing. CIRP Journal of Manufacturing Science and Technology, 2013, 6(4): 263–273

    Article  Google Scholar 

  25. Wu D Z, Rosen D W, Wang L H, et al. Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer Aided Design, 2015, 59: 1–14

    Article  Google Scholar 

  26. Marzband M, Parhizi N, Savaghebi M, et al. Distributed smart decision-making for a multimicrogrid system based on a hierarchical interactive architecture. IEEE Transactions on Energy Conversion, 2016, 31(2): 637–648

    Article  Google Scholar 

  27. Büyüközkan G, Güleryüz S. Multi criteria group decision making approach for smart phone selection using intuitionistic fuzzy TOPSIS. International Journal of Computational Intelligence Systems, 2016, 9(4): 709–725

    Article  Google Scholar 

  28. Papakostas N, Efthymiou K, Georgoulias K, et al. On the configuration and planning of dynamic manufacturing networks. In: Papakostas N, Efthymiou K, Georgoulias K, et al., eds. Logistics Research. Berlin: Springer, 2012, 5(3–4): 105–111

    Article  Google Scholar 

  29. Messina G, Morici L, Celentano G, et al. REBCO coils system for axial flux electrical machines application: Manufacturing and testing. IEEE Transactions on Applied Superconductivity, 2016, 26(3): 1–4

    Article  Google Scholar 

  30. Rajalingam S, Malathi V. HEM algorithm based smart controller for home power management system. Energy and Building, 2016, 131: 184–192

    Article  Google Scholar 

  31. Javed A, Larijani H, Ahmadinia A, et al. Smart random neural network controller for HVAC using cloud computing technology. IEEE Transactions on Industrial Informatics, 2016, (99): 1–11

    Google Scholar 

  32. Zhong R Y, Huang G Q, Lan S, et al. A two-level advanced production planning and scheduling model for RFID-enabled ubiquitous manufacturing. Advanced Engineering Informatics, 2015, 29(4): 799–812

    Article  Google Scholar 

  33. Wang X V, Xu X W. A collaborative product data exchange environment based on STEP. International Journal of Computer Integrated Manufacturing, 2015, 28(1): 75–86

    Article  Google Scholar 

  34. Zhong R Y, Li Z, Pang A L Y, et al. RFID-enabled real-time advanced planning and scheduling shell for production decisionmaking. International Journal of Computer Integrated Manufacturing, 2013, 26(7): 649–662

    Article  Google Scholar 

  35. Zhong R Y, Newman S T, Huang G Q, et al. Big data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Computers & Industrial Engineering, 2016, 101: 572–591

    Article  Google Scholar 

  36. Zhang L, Luo Y, Tao F, et al. Cloud manufacturing: A new manufacturing paradigm. Enterprise Information Systems, 2014, 8 (2): 167–187

    Article  Google Scholar 

  37. Xu X. From cloud computing to cloud manufacturing. Robotics and Computer-integrated Manufacturing, 2012, 28(1): 75–86

    Article  Google Scholar 

  38. Zhong R Y, Huang G Q, Lan S L, et al. A big data approach for logistics trajectory discovery from RFID-enabled production data. International Journal of Production Economics, 2015, 165: 260–272

    Article  Google Scholar 

  39. Lee J, Kao H A, Yang S. Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP, 2014, 16: 3–8

    Article  Google Scholar 

  40. Cochran D S, Kinard D, Bi Z. Manufacturing system design meets big data analytics for continuous improvement. Procedia CIRP, 2016, 50: 647–652

    Article  Google Scholar 

  41. Niesen T, Houy C, Fettke P, et al. Towards an integrative big data analysis framework for data-driven risk management in Industry 4.0. In: Proceedings of 2016 49th Hawaii International Conference on System Sciences (HICSS). Hawaii, 2016, 5065–5074

    Google Scholar 

  42. Babiceanu R F, Seker R. Big data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook. Computers in Industry, 2016, 81: 128–137

    Article  Google Scholar 

  43. Zhong R Y, Lan S, Xu C, et al. Visualization of RFID-enabled shopfloor logistics big data in cloud manufacturing. International Journal of Advanced Manufacturing Technology, 2016, 84(1–4): 5–16

    Article  Google Scholar 

  44. O’Donovan P, Leahy K, Bruton K, et al. Big data in manufacturing: A systematic mapping study. Journal of Big Data, 2015, 2: 20

    Article  Google Scholar 

  45. Lee J, Bagheri B, Kao H A. A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 2015, 3: 18–23

    Article  Google Scholar 

  46. DIS. ISO. 9241–210: 2010. Ergonomics of human system interaction- Part 210: Human-centred design for interactive systems. International Standardization Organization (ISO), 2009

    Google Scholar 

  47. Tseng M M, Jiao R J, Wang C. Design for mass personalization. CIRP Annals-Manufacturing Technology, 2010, 59(1): 175–178

    Article  Google Scholar 

  48. Schmidt R, Möhring M, Härting R C, et al. Industry 4.0—Potentials for creating smart products: Empirical research results. In: International Conference on Business Information Systems. 2015, 16–27

    Chapter  Google Scholar 

  49. Zheng P, Yu S, Wang Y, et al. User-experience based product development for mass personalization: A case study. Procedia CIRP, 2017, 63: 2–7

    Article  Google Scholar 

  50. Gu P, Xue D, Nee A Y C. Adaptable design: Concepts, methods, and applications. Proceedings of the Institution of Mechanical Engineers. Part B, Journal of Engineering Manufacture, 2009, 223 (11): 1367–1387

    Google Scholar 

  51. Liu A, Lu S C Y. A new coevolution process for conceptual design. CIRP Annals-Manufacturing Technology, 2015, 64(1): 153–156

    Article  MathSciNet  Google Scholar 

  52. Chen X, Wang Y, Yin Z. RFID based production and distribution management systems for home appliance industry. In: Proceedings of 2010 IEEE International Conference on Automation and Logistics (ICAL). Hong Kong and Macau, 2010, 177–182

    Chapter  Google Scholar 

  53. Lee E A. Cyber physical systems: Design challenges. In: Proceedings of 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC). IEEE, 2008, 363–369

    Chapter  Google Scholar 

  54. MTConnect Institute. MTConnect Standard. Part 1—Overview and protocol. Version 1.0.1. 2009. Retrieved from https://static1.squarespace. com/static/54011775e4b0bc1fe0fb8494/t/55800405e4b057 e97372fe59/1434452997276/MTC_Part_1_Overview_v1.0.1R10_02_09.pdf

    Google Scholar 

  55. Pinedo M. Scheduling—Theory, Algorithms, and Systems. New York: Springer, 2015

    MATH  Google Scholar 

  56. Tang L, Zhang Y. Parallel machine scheduling under the disruption of machine breakdown. Industrial & Engineering Chemistry Research, 2009, 48(14): 6660–6667

    Article  Google Scholar 

  57. Sanlaville E, Schmidt G. Machine scheduling with availability constraints. Acta Informatica, 1998, 35(9): 795–811

    Article  MathSciNet  MATH  Google Scholar 

  58. Ivanov D, Dolgui A, Sokolov B, et al. A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory Industry 4.0. International Journal of Production Research, 2016, 54(2): 386–402

    Article  Google Scholar 

  59. Lee J, Bagheri B, Kao H A. A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 2015, 3: 18–23

    Article  Google Scholar 

  60. Attanasio A, Ghiani G, Grandinetti L, et al. Auction algorithms for decentralized parallel machine scheduling. Parallel Computing, 2006, 32(9): 701–709

    Article  MathSciNet  Google Scholar 

  61. Wong T, Leung C, Mak K L, et al. Dynamic shopfloor scheduling in multi-agent manufacturing systems. Expert Systems with Applications, 2006, 31(3): 486–494

    Article  Google Scholar 

  62. Xiang W, Lee H. Ant colony intelligence in multi-agent dynamic manufacturing scheduling. Engineering Applications of Artificial Intelligence, 2008, 21(1): 73–85

    Article  Google Scholar 

  63. Adeyeri MK, Mpofu K, Adenuga Olukorede T. Integration of agent technology into manufacturing enterprise: A review and platform for Industry 4.0. In: Proceedings of IEOM 2015 5th International Conference on Industrial Engineering and Operations Management. 2015

    Google Scholar 

  64. Glück M, Wolf J. Integrated quality management for Industry 4.0. Productivity Management, 2014, 19: 19–22

    Google Scholar 

  65. Wells L J, Shafae M S, Camelio J A. Automated part inspection using 3D point clouds. In: Proceedings of ASME 2013 International Manufacturing Science and Engineering Conference Collocated with the 41st North American Manufacturing Research Conference. 2013, V002T02A034

    Google Scholar 

  66. McAfee S T, Greene W J. US Patents 20120290259,–11-15

  67. Dai Q Y, Zhong R Y, Huang G Q, et al. Radio frequency identification-enabled real-time manufacturing execution system: A case study in an automotive part manufacturer. International Journal of Computer Integrated Manufacturing, 2012, 25(1): 51–65

    Article  Google Scholar 

  68. Pang L Y, Li Z, Huang G Q, et al. Auto-ID enabled reconfigurable SaaS shell for real-time fleet management in industrial parks. Journal of Computing in Civil Engineering, 2013, 29(2): 04014032

    Article  Google Scholar 

  69. Nee A, Ong S, Chryssolouris G, et al. Augmented reality applications in design and manufacturing. CIRP Annals-Manufacturing Technology, 2012, 61(2): 657–679

    Article  Google Scholar 

  70. Jin X, Zong S, Li Y, et al. A domain knowledge based method on active and focused information service for decision support within big data environment. Procedia Computer Science, 2015, 60: 93–102

    Article  Google Scholar 

  71. Zhong R Y, Huang G Q, Dai Q Y, et al. Mining SOTs and dispatching rules from RFID-enabled real-time shopfloor production data. Journal of Intelligent Manufacturing, 2014, 25(4): 825–843

    Article  Google Scholar 

  72. Li B H, Zhang L, Wang S L, et al. Cloud manufacturing: A new service-oriented networked manufacturing model. Computer Integrated Manufacturing Systems, 2010, 16(1): 1–7, 16 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Y. Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, P., wang, H., Sang, Z. et al. Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Front. Mech. Eng. 13, 137–150 (2018). https://doi.org/10.1007/s11465-018-0499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-018-0499-5

Keywords

Navigation