Skip to main content
Log in

Microstructure and electrical properties of NaNbO3-BaTiO3 lead-free piezoelectric ceramics

  • Research Article
  • Published:
Frontiers of Mechanical Engineering in China Aims and scope Submit manuscript

Abstract

Lead-free piezoelectric ceramics (1 − x) NaNbO3-xBaTiO3 have been fabricated by a traditional ceramic sintering technique. The effects of BaTiO3 (BT) synthesized by hydrothermal method on crystal structure, density, dielectric, piezoelectric, and electromechanical properties were investigated. Results show that the phase structure transforms from the orthorhombic phase to the tetragonal phase with the increase of the content of BT, and the two phases co-exist when 0.08<×⩽0.10. However, the optimum composition for (1 − x)NaNbO3-xBaTiO3 ceramics is 0.90NaNbO3-0.10BaTiO3. The 0.90NaNbO3-0.10BaTiO3 ceramics sintered at 1250°C have higher properties: piezoelectric constant d 33 of 120 pC/N, dielectric constant ετ of 718, planar electromechanical coupling factor k p of 24%, planar frequency N d of 3 MHz·mm, and the mechanical quality factor Q m of 138, respectively. The results show that the (1−x)NaNbO3-xBaTiO3 ceramics is one of the promising lead-free materials for high-frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsubara M, Yamaguchi T. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. J Am Ceram Soc, 2005, 88 (5): 1190–1196

    Article  Google Scholar 

  2. Zhang S J, Xia R. Characterization of lead free (Na0.5K0.5) NbO3-LiSbO3 piezoceramic. Solid State Communications, 2007, 141: 675–679

    Article  Google Scholar 

  3. Zhang S J, Xia R. Lead-free piezoelectric ceramics vs. PZT. J. Electroceram, DOI:10.1007/s10832-007-9056-z, 2007

  4. Ahn CW, Song H C. Effect of MnO2 on the piezoelectric properties of (1 − x)(Na0.5K0.5)NbO3-xBaTiO3 ceramics. Japanese Journal of Applied Physics, 2005, 44: 1361–1364

    Article  Google Scholar 

  5. Zhi Y, Chen A. Piezoelectric and strain properties of Ba(Ti1 − x Zrx) O3 ceramics. Journal of Applied Physics, 2002, 92(3): 1489–1493

    Article  Google Scholar 

  6. Lin D, Kowk KW. Structure and electrical properties of (Na0.5K0.5) NbO3-LiSbO3 lead-free piezoelectric ceramics. Journal of Applied Physics, 2007, 101: 074111-(1-6)

    Google Scholar 

  7. Chang R C, Chu S Y. The effect of sintering temperature on the properties of (Na0.5K0.5)NbO3-CaTiO3 based lead-free piezoelectric ceramics. Sensors and Actuators A, 2007, 138: 355–360

    Article  Google Scholar 

  8. Du H L, Tang F S. Influence of sintering temperature on piezoelectric Properties of (Na0.5K0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics. Materials Research Bulletin, 2007, 42: 1594–1601

    Article  Google Scholar 

  9. Hagh N M, Jadidian B. Property-processing Relationship in Lead-Free (K,Na,Li)NbO3-solid solution system. J Electroceram, 2007, 18: 339–346

    Article  Google Scholar 

  10. Satio Y, Takao H. Lead-Free Piezoceramics. Nature, 2004, 432(4): 84–87

    Google Scholar 

  11. Matsubara M, Yamaguchi T. Synthesis and characterization of (Na0.5K0.5)(Nb0.7Ta0.3)O3 piezoelectric ceramics sintered with sintering aid K5.4Cu1.3Ta10O29. Japanese Journal of Applied Physics, 2005, 44(9): 6618–6623

    Article  Google Scholar 

  12. Guo Y P, Kakimoto K I. (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Materials Letters, 2005, 59: 241–244

    Article  Google Scholar 

  13. Hollenstein E, Davis M. Piezoelectric properties of Li- and Tamodified (Na0.5K0.5)NbO3 ceramics. Applied Physics Letters, 2005, 87: 182905-(1-3)

    Google Scholar 

  14. Guo Y P, Kakimoto K. Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics. Solid State Communications, 2004, 129: 279–284

    Article  Google Scholar 

  15. Chang Y F, Yang Z P. Dielectric and piezoelectric properties of Alkaline-earth Titanate doped (Na0.5K0.5)NbO3 ceramics. Materials Letters, 2007, 61: 785–789

    Article  Google Scholar 

  16. Jiao G C, Fan H Q. Structure and piezoelectric properties of Cudoped Potassium Sodium Tantalite Niobate ceramics. Materials Letters, 2007, 61: 4185–4187

    Article  Google Scholar 

  17. Wang R, Xie R J. Enhanced piezoelectricity around the tetragonal/orthorhombic morphotropic phase boundary in (K,Na)NbO3-ATiO3 solid solution. J Electroceram, DOI:10.1007/s10832-007-9136-0, 2007

  18. Zeng J T, Kwok K W. Ferroelectric and Piezoelectric Properties of Na1−x BaxNb1−x TixO3 Ceramics. J Am Ceram Soc, 2006, 89: 2828–2832

    Google Scholar 

  19. Aoyagi R, Matsuoka T. Piezoelectric properties of NaNbO3-BaTiO3 ceramics. In: Sixteenth IEEE International Symposium. Applications of Ferroelectrics, ISAF, 2007, 677–678

  20. Park S H, Ahn C W. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(8B): 1072–1074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihui Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, S., Zhu, K., Qiu, J. et al. Microstructure and electrical properties of NaNbO3-BaTiO3 lead-free piezoelectric ceramics. Front. Mech. Eng. China 4, 345–349 (2009). https://doi.org/10.1007/s11465-009-0050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-009-0050-9

Keywords

Navigation