Skip to main content
Log in

Optimal transport maps on infinite dimensional spaces

  • Survey Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We will give a survey on results concerning Girsanov transformations, transportation cost inequalities, convexity of entropy, and optimal transport maps on some infinite dimensional spaces. Some open Problems will be arisen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L, Gigli N, Savaré G. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect in Math, ETH Zürich. Basel: Birkhäuser, 2005

    MATH  Google Scholar 

  2. Ambrosio L, Kirchheim B, Pratelli A. Existence of optimal transport maps for crystalline norms. Duke Math J, 2004, 125: 207–241

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosio L, Pratelli A. Existence and stability results in the L 1 theory of optimal transportation. In: Morel J-M, Takens F, Teissier B, eds. Optimal Transportation and Applications. Lecture Notes in Math, Vol 1813. Berlin: Springer, 2003, 123–160

    Chapter  Google Scholar 

  4. Bao J, Wang F -Y, Yuan C G. Transportation cost inequalities for neutral functional stochastic equations. Z Anal Anwend, 2013, 32: 457–475

    Article  MATH  MathSciNet  Google Scholar 

  5. Bogachev V I, Kolesnikov A V. Sobolev regularity for Monge-Ampère equation in the Wiener space. arXiv: 1110.1822v1, 2011

    Google Scholar 

  6. Brenier Y. Polar factorization and monotone rearrangement of vector valued functions. Comm Pure Appl Math, 1991, 44: 375–417

    Article  MATH  MathSciNet  Google Scholar 

  7. Champion T, De Pascale L. The Monge problem in ℝd. Duke Math J, 2010, 157: 551–572

    Article  Google Scholar 

  8. Djellout H, Guilin A, Wu L. Transportation cost-information inequalities for random dynamical systems and diffusions. Ann Probab, 2004, 32: 2702–2732

    Article  MATH  MathSciNet  Google Scholar 

  9. Driver B. Integration by parts and quasi-invariance for heat measures on loop groups. J Funct Anal, 1997, 149: 470–547

    Article  MATH  MathSciNet  Google Scholar 

  10. Driver B, Lohrentz T. Logarithmic Sobolev inequalities for pinned loop groups. J Funct Anal, 1996, 140: 381–448

    Article  MATH  MathSciNet  Google Scholar 

  11. Driver B, Srimurthy V K. Absolute continuity of heat kernel measure with pinned Wiener measure on loop groups. Ann Probab, 2001, 29: 691–723

    Article  MATH  MathSciNet  Google Scholar 

  12. Fang S. Introduction to Malliavin Calculus. Math Ser for Graduate Students. Beijing/Berlin: Tsinghua University Press/Springer, 2005

    Google Scholar 

  13. Fang S, Malliavin P. Stochastic analysis on the path space of a Riemannian manifold. J Funct Anal, 1993, 131: 249–274

    Article  MathSciNet  Google Scholar 

  14. Fang S, Nolot V. Sobolev estimates for optimal transport maps on Gaussian spaces. J Funct Anal, 2014, 266: 5045–5084

    Article  MATH  MathSciNet  Google Scholar 

  15. Fang S, Shao J. Transportation cost inequalities on path and loop groups. J Funct Anal, 2005, 218: 293–317

    Article  MATH  MathSciNet  Google Scholar 

  16. Fang S, Shao J. Optimal transport maps for Monge-Kantorovich problem on loop groups. J Funct Anal, 2007, 248: 225–257

    Article  MATH  MathSciNet  Google Scholar 

  17. Fang S, Shao J, Sturm K T. Wasserstein space over the Wiener space. Probab Theory Related Fields, 2010, 146: 535–565

    Article  MATH  MathSciNet  Google Scholar 

  18. Fang S, Wang F Y, Wu B. Transportation-cost inequality on path spaces with uniform distance. Stochastic Process Appl, 2008, 118(12): 2181–2197

    Article  MATH  MathSciNet  Google Scholar 

  19. Feyel D, Üstünel A S. Monge-Kantorovich measure transportation and Monge-Ampère equation on Wiener space. Probab Theory Related Fields, 2004, 128: 347–385

    Article  MATH  MathSciNet  Google Scholar 

  20. Feyel D, Üstünel A S. Solution of the Monge-Ampère equation on Wiener space for general log-concave measures. J Funct Anal, 2006, 232: 29–55

    Article  MATH  MathSciNet  Google Scholar 

  21. Gross L. Logarithmic Sobolev inequalities on Lie groups. Illinois J Math, 1992, 36: 447–490

    MATH  MathSciNet  Google Scholar 

  22. Knott M, Smith C S. On the optimal mapping of distributions. J Optim Theory Appl, 1984, 43(1): 39–49

    Article  MATH  MathSciNet  Google Scholar 

  23. Kolesnikov A V. On Sobolev regularity of mass transport and transportation inequalities. arXiv: 1007.1103v3, 2011

    Google Scholar 

  24. Lassalle R. Invertibility of adapted perturbations of the identity on abstract Wiener space. J Funct Anal, 2012, 262: 2734–2776

    Article  MATH  MathSciNet  Google Scholar 

  25. Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann Math, 2009, 169: 903–991

    Article  MATH  MathSciNet  Google Scholar 

  26. Ma Y. Transportation inequalities for stochastic differential equations with jumps. Stochastic Process Appl, 2010, 120: 2–21

    Article  MATH  MathSciNet  Google Scholar 

  27. Malliavin P. Stochastic Analysis. Grundlehren Math Wiss, Vol 313. Berlin: Springer, 1997

    MATH  Google Scholar 

  28. Malliavin P. Hypoellipticity in infinite dimension. In: Pinsky M, ed. Diffusion Processes and Related Problems in Analysis, Vol I: Diffusions in Analysis and Geometry. Progress in Probability. Boston: Birkhäuser, 2012, 17–33

    Google Scholar 

  29. McCann R. Polar factorization of maps on Riemannian manifolds. Geom Funct Anal, 2001, 11: 589–608

    Article  MATH  MathSciNet  Google Scholar 

  30. Nolot V. Convexity and problems of optimal transport maps on the Wiener space. Ph D Thesis, University of Bourgogne, 2013

    Google Scholar 

  31. Rachev S T, Rüschendorf L. Mass Transportation Problems. Probab Appl. New York: Springer-Verlag, 1998

    Google Scholar 

  32. Shao J. From the heat measure to the pinned Wiener measure on loop groups. Bull Sci Math, 2011, 135: 601–612

    Article  MATH  MathSciNet  Google Scholar 

  33. Sturm K T. On the geometry of metric measure spaces. Acta Math, 2006, 196: 65–131

    Article  MATH  MathSciNet  Google Scholar 

  34. Sturm K T, Von Renesse M K. Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm Pure Appl Math, 2005, 58: 923–940

    Article  MATH  MathSciNet  Google Scholar 

  35. Tiser J. Differentiation theorem for Gaussian measures on Hilbert space. Trans Amer Math Soc, 1988, 308: 655–666

    Article  MATH  MathSciNet  Google Scholar 

  36. Üstünel A S. Entropy, invertibility and variational calculus of adapted shifts on Wiener space. J Funct Anal, 2009, 257: 3655–3689

    Article  MATH  MathSciNet  Google Scholar 

  37. Üstünel A S. Variational calculation of Laplace transforms via entropy on Wiener space and applications. J Funct Anal, 2014, 267: 3058–3083

    Article  MATH  MathSciNet  Google Scholar 

  38. Villani C. Optimal Transport, Old and New. Grundlehren Math Wiss, Vol 338. Berlin: Springer-Verlag, 2009

    Book  MATH  Google Scholar 

  39. Villani C. Regularity of optimal transport and cut-locus: from non smooth analysis to geometry to smooth analysis. Discrete Contin Dyn Syst, 2011, 30: 559–571

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang F -Y. Probability distance inequalities on Riemannian manifolds and path spaces. J Funct Anal, 2004, 206(1): 167–190

    Article  MATH  MathSciNet  Google Scholar 

  41. Wang F -Y. Transportation-cost inequalities on path space over manifolds with boundary. Doc Math, 2013, 18: 297–322

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizan Fang.

Additional information

In memory of Denis Feyel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Nolot, V. Optimal transport maps on infinite dimensional spaces. Front. Math. China 10, 715–732 (2015). https://doi.org/10.1007/s11464-015-0474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-015-0474-y

Keywords

MSC

Navigation