Skip to main content
Log in

Recurrence and decay properties of a star-typed queueing model with refusal

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We consider a multiclass service system with refusal and bulk-arrival. The properties regarding recurrence, ergodicity, and decay properties of such model are discussed. The explicit criteria regarding recurrence and ergodicity are obtained. The stationary distribution is given in the ergodic case. Then, the exact value of the decay parameter, denoted by λ E , is obtained in the transient case. The criteria for the λ E -recurrence are also obtained. Finally, the corresponding λ E -invariant vector/measure is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson W. Continuous-Time Markov Chains: An Applications-Oriented Approach. New York: Springer-Verlag, 1991

    Book  MATH  Google Scholar 

  2. Chen Anyue, Li Junping, Hou Zhenting, Wang Ng Kai. Decay properties and quasistationary distributions for stopped Markovian bulk-arrival and bulk-service queues. Queueing Syst, 2010, 66: 275–311

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen Mufa. From Markov Chains to Non-Equilibrium Particle Systems. Singapore: World Scientific, 1992

    Book  MATH  Google Scholar 

  4. Darroch J N, Seneta E. On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J Appl Prob, 1967, 245: 192–196

    Article  MathSciNet  Google Scholar 

  5. Flaspohler D C. Quasi-stationary distributions for absorbing continuous-time denumerable Markov chains. Ann Inst Statist Math, 1974, 26: 351–356

    Article  MATH  MathSciNet  Google Scholar 

  6. Kelly F P. Invariant measures and the generator. In: Kingman J F C, Reuter G E, eds. Probability, Statistics and Analysis. London Math Soc Lecture Note Ser, Vol 79. Cambridge: Cambridge Univ Press, 1983, 143–160

    Chapter  Google Scholar 

  7. Kijima M. Quasi-limiting distributions of Markov chains that are skip-free to the left in continuous-time. J Appl Probab, 1993, 30: 509–517

    Article  MATH  MathSciNet  Google Scholar 

  8. Kingman J F C. The exponential decay of Markov transition probability. Proc London Math Soc, 1963, 13: 337–358

    Article  MATH  MathSciNet  Google Scholar 

  9. Li Junping, Chen Anyue. Decay property of stopped Markovian bulk-arriving queues. Adv Appl Probab, 2008, 40(1): 95–121

    Article  MATH  Google Scholar 

  10. Li Junping, Chen Anyue. The decay parameter and invariant measures for Markovian bulk-arrival queues with control at idle time. Methodol Comput Appl Probab, 2011, DOI 10.1007/s11009-011-9252-9

    Google Scholar 

  11. Nair M G, Pollett P K. On the relationship between µ-invariant measures and quasistationary distributions for continuous-time Markov chains. Adv Appl Probab, 1993, 25: 82–102

    Article  MATH  MathSciNet  Google Scholar 

  12. Pollett P K. Reversibility, invariance and mu-invariance. Adv Appl Probab, 1988, 20: 600–621

    Article  MATH  MathSciNet  Google Scholar 

  13. Pollett P K. The determination of quasi-instationary distribution directly from the transition rates of an absorbing Markov chain. Math Comput Modelling, 1995, 22: 279–287

    Article  MATH  MathSciNet  Google Scholar 

  14. Pollett P K. Quasi-stationary distributions for continuous time Markov chains when absorption is not certain. J Appl Probab, 1999, 36: 268–272

    Article  MATH  MathSciNet  Google Scholar 

  15. Tweedie R L. Some ergodic properties of the Feller minimal process. Quart J Math Oxford, 1974, 25(2): 485–493

    Article  MATH  MathSciNet  Google Scholar 

  16. Van Doorn E A. Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process. Adv Appl Probab, 1985, 17: 514–530

    Article  MATH  Google Scholar 

  17. Van Doorn E A. Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv Appl Probab, 1991, 23: 683–700

    Article  MATH  Google Scholar 

  18. Vere-Jones D. Geometric ergodicity in denumerable Markov chains. Quart J Math Oxford, 1962, 13(2): 7–28

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang Xiangqun. The Construction Theory of Denumerable Markov Processes. New York: Wiley, 1990

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, X., Wang, J. et al. Recurrence and decay properties of a star-typed queueing model with refusal. Front. Math. China 10, 917–932 (2015). https://doi.org/10.1007/s11464-015-0444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-015-0444-4

Keywords

MSC

Navigation