Skip to main content
Log in

The significance of geological structures on the subsidence phenomenon at the Maceió salt dissolution field (Brazil)

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In the present study, we investigate the subsidence phenomenon affecting some neighborhoods located to the west of the city of Maceió, State of Alagoas (northeastern Brazil), which is due to the underground solution mining of halite (NaCl) from 1977 to 2019. The first symptoms of this phenomenon, such as surface cracks, ground depressions, small earthquakes, etc., began to be noticed only in 2018. So far, it has already caused enormous damage to the local population, resulting in the creation of true “ghost” neighborhoods. In this study, we have integrated surface displacement determined from satellite images using the persistent scatterer interferometry and the small baseline subset (SBAS) InSAR techniques for the period of 2016–2020, and 2D numerical modelling based on the finite element method. The results showed a wide surface subsidence (2.6 km2) with maximum vertical displacements of − 100 cm and maximum subsidence rate of − 22 cm/year. Variations in the mechanical properties of geological faults significantly affect surface subsidence pattern. We speculate that the reactivation of fractures may be an important mechanism leading to the formation/propagation of numerous cracks at the surface. Finally, the study may provide a better understanding about settlement dynamics in salt dissolution fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. AGÊNCIA NACIONAL DE MINERAÇÃO – ANM (2019) http://www.maceio.al.gov.br/wp-content/uploads/2019/01/pdf/2019/01/LAVRA-SUBTERR%C3%82NEA-DE-SAL-GEMA-EM-MACEI%C3%93-AL-ANM.pdf

  2. ANUÁRIO ESTATÍSTICO BRASILEIRO DE PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS (2020) ANP, Rio de Janeiro, 266 pp. https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/anuario-estatistico/arquivos-anuario-estatistico-2020/anuario-2020.pdf

  3. ANUÁRIO MINERAL BRASILEIRO (2010) DNPM, Brasília. https://www.gov.br/anm/pt-br/centrais-de-conteudo/publicacoes/serie-estatisticas-e-economia-mineral/anuario-mineral/anuario-mineral-brasileiro/anuario-mineral-brasileiro-2010

  4. Aquino GS, Lana MC (1990) Exploração na Bacia de Sergipe-Alagoas: O “Estado Da Arte”, 1990. Boletim de Geociências da Petrobras 4(1):75–84

    Google Scholar 

  5. Baar CA (1977) Applied salt-rock mechanics 1: the in situ behavior of salt rocks. Elsevier, New York

    Google Scholar 

  6. Bell FG (1975) Salt and subsidence in Cheshire, England. Eng Geol 9:237–247. https://doi.org/10.1016/0013-7952(75)90002-2

    Article  Google Scholar 

  7. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383

    Article  Google Scholar 

  8. Bizzi LA et al (2003) Geologia, tectônica e recursos minerais do Brasil: texto, mapas e SIG. CPRM, Brasilia

    Google Scholar 

  9. Brown E, Hoek E (1978) Trends in relationships between measured in-situ stresses and depth. Int J Rock Mech Min Sci Geomech Abstr 15:211–215

    Article  Google Scholar 

  10. Bui TA, Brinkgreve RBJ, Zampich L (2018) The Norton-based double power creep model for rock salt. PLAXIS bv, Netherlands, p 44p

    Google Scholar 

  11. Campos Neto OPA, Lima WS, Cruz FEG (2007) Bacia de Sergipe-Alagoas. Boletim de Geociências da Petrobras 15(2):405–415

    Google Scholar 

  12. Carter NL, Horseman ST, Russell JE, Handin J (1993) Rheology of rocksalt. J Struct Geol 15(9–10):1257–1271. https://doi.org/10.1016/0191-8141(93)90168-A

    Article  Google Scholar 

  13. Cerqueira RM et al (1997) Jazidas de potássio de Taquari/Vassouras, Sergipe. In: Schobbenhaus C, Queiroz ET, Coelho, CES (Coord.) Principais depósitos minerais do Brasil: rochas e minerais industriais. DNPM-CPRM, Brasília, pp 277–312

  14. Colesanti C, Wasowski J (2006) Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng Geol 88:173–199

    Article  Google Scholar 

  15. Cooper AH (2020) Geological hazards from salt mining, brine extraction and natural salt dissolution in the UK. Geol Soc Lond Eng Geol Spec Publ 29:369–387

    Google Scholar 

  16. Costa A et al (2018) Potential of storing gas with high CO2 content in salt caverns built in ultra-deep water in Brazil. Greenh Gases Sci Technol 9:79–94

    Article  Google Scholar 

  17. Crosetto M, Crippa B, Biescas E (2005) Early detection and in-depth analysis of deformation phenomenon by radar interferometry. Eng Geol 79:81–91

    Article  Google Scholar 

  18. Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B (2016) Persistent scatterer interferometry: a review. ISPRS J Photogramm Remote Sens 115:78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011

    Article  Google Scholar 

  19. Dusseault MB, Fordham CJ (1993) Time-dependent behavior of rocks. In: Hudson JA (ed) Rock testing and site characterization. Pergamon, p 119–149. https://doi.org/10.1016/B978-0-08-042066-0.50013-6

  20. Elis VR, Barroso CMR, Kiang CH (2004) Aplicação de ensaios de resistividade na caracterização do Sistema Aquífero Barreiras/Marituba em Maceió - AL. Revista Brasileira de Geofísica 22(2):101–113. https://doi.org/10.1590/S0102-261X2004000200001

    Article  Google Scholar 

  21. Euillades PA, Euillades LE, Rosell P, Roa Y (2020) Subsidence in Maceio, Brazil, characterized by dinsar and inverse modeling. In: 2020 IEEE Latin American GRSS & ISPRS remote sensing conference (LAGIRS), 2020, pp 313–317. https://doi.org/10.1109/LAGIRS48042.2020.9165567

  22. Feijó FJ (1994) Bacias de Sergipe e Alagoas. Boletim de Geociências da PETROBRÁS 8(1):149–161

    Google Scholar 

  23. Ferretti A, Prati C, Rocca F (2001) Permanent Scatterers in SAR Interferometry. IEEE Trans Geosci Remote Sens 39(1):8–19

    Article  Google Scholar 

  24. Florêncio CP (2001) Geologia dos Evaporitos Paripueira na Sub-Bacia de Maceió, Alagoas, região nordeste do Brasil. Doctoral Thesis. São Paulo University, São Paulo, 160 pp

  25. Fokker PA (1995) The behaviour of salt and salt caverns. Doctoral Thesis. Delft University of Technology, 143 pp

  26. Franssen RCMW (1994) The rheology of synthetic rocksalt in uniaxial compression. Tectonophysics 233(1–2):1–40. https://doi.org/10.1016/0040-1951(94)90218-6

    Article  Google Scholar 

  27. Fuenkajorn K, Phueakphum D (2011) Laboratory assessment of healing of fractures in rock salt. Bull Eng Geol Environ 70:665. https://doi.org/10.1007/s10064-011-0370-y

    Article  Google Scholar 

  28. Furst SL, Doucet S, Vernant P, Champollion C, Carme J-L (2021) Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion. Solid Earth 12:15–34. https://doi.org/10.5194/se-12-15-2021

    Article  Google Scholar 

  29. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94(B7):9183–9191

    Article  Google Scholar 

  30. Gama FF, Cantone A, Santos AR, Pasquali P, Paradella WR, Mura JC, Silva GG (2017) Monitoring subsidence of open pit iron mines at Carajás Province based on SBAS interferometric technique using TerraSAR-X data. Remote Sens Appl Soc Environ 8:199–211

    Google Scholar 

  31. Gama F, Mura JC, Paradella WR, Oliveira CG (2020) Deformations prior to the Brumadinho dam collapse revealed by Sentinel-1 InSAR data using SBAS and PSI techniques. Remote Sens 12(21):3664. https://doi.org/10.3390/rs12213664

    Article  Google Scholar 

  32. Gisotti G (1991) A case of induced subsidence for extraction of salt by hydrosolution. In: Land subsidence (Proceedings of the fourth international symposium on land subsidence, May 1991). IAHS Publ. no. 200, pp 235–245

  33. Gjerapic G, Thompson TW (2008) Evaluation of salt cavern closure via FEM code PLAXIS. In: Potvin Y et al (eds) SHIRMS: proceedings of the first southern hemisphere international rock mechanics symposium. Australian Centre for Geomechanics, Perth, pp 487–495. https://doi.org/10.36487/ACG_repo/808_65

  34. Günther RM et al (2015) Steady-state creep of rock salt: improved approaches for lab determination and modelling. Rock Mech Rock Eng. 48:2603–2613. https://doi.org/10.1007/s00603-015-0839-2

    Article  Google Scholar 

  35. Hartwig M, Paradella W, Mura J (2013) Detection and monitoring of surface motions in active open pit iron mine in the Amazon region, using persistent scatterer interferometry with TerraSAR-X satellite data. Remote Sens 5:4719–4734

    Article  Google Scholar 

  36. Hobbs BE, Means WD, Williams PF (1976) An outline of structural geology. Wiley, New York

    Google Scholar 

  37. Hull D, Bacon DJ (2011) Movement of dislocations. In: Hull D, Bacon DJ (eds) Introduction to dislocations. Butterworth-Heinemann, Oxford, pp 43–62. https://doi.org/10.1016/b978-0-08-096672-4.00003-7

    Chapter  Google Scholar 

  38. Hunsche U, Hampel A (1999) Rock salt—the mechanical properties of the host rock material for a radioactive waste repository. Eng Geol 52(3–4):271–291. https://doi.org/10.1016/s0013-7952(99)00011-3

    Article  Google Scholar 

  39. Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing, Malden

    Google Scholar 

  40. Jeremic ML (1994) Rock mechanics in salt mining. A.A. Balkema, Brookfield

    Google Scholar 

  41. Johnson KS (2005) Salt dissolution and subsidence or collapse caused by human activities. In: Ehlen J et al (eds) Humans as geologic agents. Geological Society of America Reviews in Engineering Geology, Boulder, pp 101–110. https://doi.org/10.1130/2005.4016(09)

    Chapter  Google Scholar 

  42. Johnson KS (2005) Subsidence hazards due to evaporite dissolution in the United States. Environ Geol 48:395–409. https://doi.org/10.1007/s00254-005-1283-5

    Article  Google Scholar 

  43. Kinscher J, Cesca S, Bernard P, Contrucci I, Mangeney A, Piguet JP, Bigarré P (2016) Resolving source mechanisms of microseismic swarms induced by solution mining. Geophys J Int 206(1):696–715. https://doi.org/10.1093/gji/ggw163

    Article  Google Scholar 

  44. Kortas G, Maj A, Drogowski J (2013) Land subsidence caused by solution mining in the Mogilno salt dome. Geol Geophys Environ 39(3):175–187. https://doi.org/10.7494/geol.2013.39.3.175

    Article  Google Scholar 

  45. Lauknes TR, Piyush Shanker A, Dehls JF, Zebker HA, Henderson IHC, Larsen Y (2010) Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens Environ 114(9):2097–2109. https://doi.org/10.1016/j.rse.2010.04.015

    Article  Google Scholar 

  46. Lima C, Nascimento E, Assumpção M (1997) Stress orientations in Brazilian sedimentary basins from breakout analysis: implications for force models in the South American plate. Geophys J Int 130(1):112–124. https://doi.org/10.1111/j.1365-246X.1997.tb00991.x

    Article  Google Scholar 

  47. Lima IF (1990) Maceió a cidade restinga: contribuição ao estudo geomorfológico do litoral alagoano. Edufal, Maceió

    Google Scholar 

  48. Li SY, Urai JL (2016) Rheology of rock salt for salt tectonics modeling. Pet Sci 13:712–724. https://doi.org/10.1007/s12182-016-0121-6

    Article  Google Scholar 

  49. Liu Z, Zhou C, Li B, Zhang L, Liang Y (2020) Effects of grain dissolution-diffusion sliding and hydro-mechanical interaction on the creep deformation of soft rocks. Acta Geotech 15:1219–1229. https://doi.org/10.1007/s11440-019-00823-9

    Article  Google Scholar 

  50. Maia CA, Poiate JE, Falcão, JL, Coelho LFM (2005) Triaxial creep tests in salt applied in drilling through thick salt layers in campos Basin-Brazil. Paper presented at the SPE/IADC drilling conference, Amsterdam, Netherlands, February 2005. https://doi.org/10.2118/92629-MS

  51. Mancini F et al (2009) Monitoring ground subsidence induced by salt mining in the city of Tuzla (Bosnia and Herzegovina). Environ Geol 58:381–389. https://doi.org/10.1007/s00254-008-1597-1

    Article  Google Scholar 

  52. Melo PRC (1977) Método de lavra por dissolução subterrânea empregado pela Salgema Mineração LTDA. VII Simpósio Brasileiro de Mineração. Porto Alegre Julho de 1977:276–291

    Google Scholar 

  53. Mohriak WU (2003) Bacias sedimentares da margem continental Brasileira. In: Bizzi LA, Schobbenhaus C, Vidotti RM, Gonçalves JH (eds) Geologia, Tectônica e Recursos Minerais do Brasil. CPRM, Brasília, pp 87–165

    Google Scholar 

  54. Paradella WR et al (2015) Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Eng Geol 193:61–78. https://doi.org/10.1016/j.enggeo.2015.04.015

    Article  Google Scholar 

  55. Pasquali P, Cantone A, Riccardi P, De Filippi M, Ogushi F, Tamura M, Gagliano S (2014) Monitoring land subsidence in the Tokyo region with SAR interferometric stacking techniques. Eng Geol Soc Territ 5:995–999. https://doi.org/10.1007/978-3-319-09048-1_191

    Article  Google Scholar 

  56. Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin

    Google Scholar 

  57. Pei Y, Paton DA, Knipe RJ, Wu K (2015) A review of fault sealing behaviour and its evaluation in siliciclastic rocks. Earth Sci Rev 150:121–138. https://doi.org/10.1016/j.earscirev.2015.07.011

    Article  Google Scholar 

  58. Perissin D, Wang Z, Wang T (2011) SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. In: Proceedings of ISRSE 2011, Sidney (Australia), 10–15 April 2011

  59. Perissin D, Wang T (2012) Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans Geosci Remote Sens 50(1):271–280. https://doi.org/10.1109/TGRS.2011.2160644

    Article  Google Scholar 

  60. Perski Z, Hanssen R, Wojcik A, Wojciechowski T (2009) InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland. Eng Geol 106:58–67

    Article  Google Scholar 

  61. Raucoules D, Maisons C, Carnec C, Le Mouelic S, King C, Hosford S (2003) Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France): comparison with ground-based measurement. Remote Sens Environ 88(4):468–478. https://doi.org/10.1016/j.rse.2003.09.005

    Article  Google Scholar 

  62. Richner DR, Shock D, Ahlness JK, Tweeton DR, Larson WL, Millenacker DJ, Schmidt RD (1992) Solution mining: in situ techniques. In: Hartman HL et al (eds) SME mining engineering handbook, vol 1, 2nd edn. SME Inc., Littleton, pp 1493–1528

    Google Scholar 

  63. Rocha WJS, Campos JEG, Cavalcante AT (2005) Estudo da evolução potenciométrica dos aquíferos da região de Maceió-AL. Geociências 24(2):193–201

    Google Scholar 

  64. Rothenburg L, Carvalho ALP Jr, Dusseault MB (2007) Performance of a mining panel over tachyhydrite in Taquari-Vassouras potash mine. In: Wallner M et al (eds) The mechanical behavior of salt-understanding of THMC processes in salt. Taylor & Francis, London, pp 305–314

    Google Scholar 

  65. Schaller H (1969) Revisão estratigráfica da bacia de Sergipe/Alagoas. Boletim técnico da Petrobrás 12(1):21–86

    Google Scholar 

  66. SERVIÇO GEOLÓGICO DO BRASIL – CPRM (2019a) Estudos sobre a instabilidade do terreno nos bairros Pinheiro, Mutange e Bebedouro, Maceió (AL): Vol. I—Relatório síntese dos resultados n. 1, 41 pp. http://rigeo.cprm.gov.br/jspui/handle/doc/21133

  67. SERVIÇO GEOLÓGICO DO BRASIL – CPRM (2019b) Estudos sobre a instabilidade do terreno nos bairros Pinheiro, Mutange e Bebedouro, Maceió (AL): Vol. II—Mapa de feições de instabilidade do terreno, 21 pp. https://rigeo.cprm.gov.br/xmlui/bitstream/handle/doc/21134/volumeII_a_v2.pdf?sequence=1&isAllowed=y

  68. SERVIÇO GEOLÓGICO DO BRASIL – CPRM (2019c) Estudos sobre a instabilidade do terreno nos bairros Pinheiro, Mutange e Bebedouro, Maceió (AL): Vol. II – Hidrogeologia. 17 p. https://rigeo.cprm.gov.br/xmlui/bitstream/handle/doc/21134/volumeII_m_v2.pdf?sequence=12&isAllowed=y

  69. SERVIÇO GEOLÓGICO DO BRASIL – CPRM (2019d) Estudos sobre a instabilidade do terreno nos bairros Pinheiro, Mutange e Bebedouro, Maceió (AL): Vol. II – Integração de dados geológicos e de extração de sal em ambiente 3D, 17 pp. https://rigeo.cprm.gov.br/jspui/bitstream/doc/21134/13/volumeII_n_v2.pdf

  70. SERVIÇO GEOLÓGICO DO BRASIL – CPRM (2019e) Estudos sobre a instabilidade do terreno nos bairros Pinheiro, Mutange e Bebedouro, Maceió (AL): Vol. II – Aspectos geológico e estrutural. 24 p. https://rigeo.cprm.gov.br/xmlui/bitstream/handle/doc/21134/volumeII_d.pdf?sequence=4&isAllowed=y

  71. Silva IJM (2015) Análise de estabilidade e deformação de cavidades em evaporitos pelo método dos elementos finitos. Doctoral Thesis. Federal University of Pernambuco. Recife, 156 pp

  72. Souza-Lima W (2009) Sequências evaporíticas da Bacia de Sergipe-Alagoas. In: Mohriak W, Szatmari P, Anjos SMC (Org.) Sal: Geologia e Tectônica Exemplos nas Bacias Brasileiras. Beca Edições Ltda, São Paulo, pp 232–251

  73. Spiers CJ, Schutjens PMTM, Brzesowsky RH, Peach CJ, Liezenberg JL, Zwart HJ (1990) Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. Geol Soc Lond Spec Publ 54(1):215–227. https://doi.org/10.1144/gsl.sp.1990.054.01.21

    Article  Google Scholar 

  74. Tamburini A, Bianchi M, Giannico C, Novali F (2010) Retrieving surface deformation by PSInSAR™ technology: a powerful tool in reservoir monitoring. Int J Greenh Gas Control 4(6):928–937. https://doi.org/10.1016/j.ijggc.2009.12.009

    Article  Google Scholar 

  75. Ter Heege JH, De Bresser JHP, Spiers CJ (2005) Rheological behaviour of synthetic rocksalt: the interplay between water, dynamic recrystallization and deformation mechanisms. J Struct Geol 27(6):948–963. https://doi.org/10.1016/j.jsg.2005.04.008

    Article  Google Scholar 

  76. Thoms RL, Gehle RM (2000) A brief history of salt cavern use. In: Geertman RM (ed) Proceedings of 8th world salt symposium, vol I. Elsevier, p 207–214

  77. Urai JL, Schléder Z, Spiers CJ, Kukla PA (2008) Flow and transport properties of salt rocks. In: Littke R et al (eds) Dynamics of complex intracontinental basins: the central European basin system. Springer, Berlin, pp 277–290

    Google Scholar 

  78. Van Der Ven PH, Cainelli C, Fernandes GJF (1989) Bacia de Sergipe-Alagoas: Geologia e Exploração. Boletim de Geociências da Petrobrás 3(4):307–319

    Google Scholar 

  79. Vassileva M et al (2021) A decade-long silent ground subsidence hazard culminating in a metropolitan disaster in Maceió, Brazil. Sci Rep 11:7704. https://doi.org/10.1038/s41598-021-87033-0

    Article  Google Scholar 

  80. Yang C et al (2014) Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl Energy. https://doi.org/10.1016/j.apenergy.2014.07.048

    Article  Google Scholar 

  81. Zhang G, Wu Y, Wang L, Zhang K, Daemen JJK, Liu W (2015) Time-dependent subsidence prediction model and influence factor analysis for underground gas storages in bedded salt formations. Eng Geol 187:156–169. https://doi.org/10.1016/j.enggeo.2015.01.003

    Article  Google Scholar 

  82. Zhang N, Yang J, Shi X-L, Li Y-P, Chen J, Liu W (2020) Ground subsidence mechanism analysis of Longgui salt rock mining area: case study. Therm Sci 24(6B):3869–3875

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Professor Eurípedes do Amaral Vargas Júnior of the Pontifical Catholic University of Rio de Janeiro. Authors would like to thank anonymous reviewers for their valuable contributions.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

MEH: Conceptualization, Methodology, Formal analysis, Project administration, Writing, Supervision. FG: Formal analysis, Investigation, Methodology. JLDS: Software, Writing. GCJ: Formal analysis, Investigation, Methodology. JCM: Data curation.

Corresponding author

Correspondence to Marcos Eduardo Hartwig.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartwig, M.E., Gama, F.F., da Silva, J.L. et al. The significance of geological structures on the subsidence phenomenon at the Maceió salt dissolution field (Brazil). Acta Geotech. 18, 5551–5573 (2023). https://doi.org/10.1007/s11440-023-01846-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01846-z

Keywords

Navigation