Skip to main content
Log in

Interface creep behavior of grouted anchors in clayey soils: effect of soil moisture condition

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study aims at investigating the influence of moisture conditions on interface shear behavior of element-grouted anchor specimens embedded in clayey soils. The tests involved comparatively short embedment lengths and a device that was specially designed to facilitate moisture conditioning. Rapidly loaded pullout tests as well as pullout tests under sustained (creep) loading were conducted to characterize both the short-term and long-term ultimate shear strength of anchor–soil interfaces. Both values of the interface shear strength were found to decrease exponentially with increasing moisture content values, although their ratio was found to show a linearly decreasing trend with increasing moisture content. The interface shear creep response under pullout conditions was characterized by a rheological hybrid model that could be calibrated using experimental measurements obtained under increasing stress levels. The accuracy of the hybrid model was examined by evaluating the stress-dependent prediction model as well as its governing parameters. This investigation uncovers the coupled impact of soil moisture condition and external stress state on the time-dependent performance of grouted anchors embedded in clayey soils by correlating the interface shear strength with soil moisture content and associating the creep model with stress levels applied to the grout–soil interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Acharya MP, Hendry MT, Martin CD (2018) Creep behavior of intact and remoulded fibrous peat. Acta Geotech 13(2):399–417

    Google Scholar 

  2. Becker LDB, Nunes ALLS (2015) Influence of soil confinement on the creep behavior of geotextiles. Geotext Geomembr 43(4):351–358

    Article  Google Scholar 

  3. Benmokrane B, Ballivy G (1991) Five-year monitoring of load losses on prestressed cement-grouted rock anchors. Can Geotech J 28(5):668–677. https://doi.org/10.1139/t91-081

    Article  Google Scholar 

  4. Benmokrane B, Chennouf A, Mitri HS (1995) Laboratory evaluation of cement-based grouts and grouted rock anchors. Int J Rock Mech Min Sci Geomech Abstr 32(7):633–642. https://doi.org/10.1016/0148-9062(95)00021-8

    Article  Google Scholar 

  5. Borana L, Yin JH, Singh DN, Shukla SK, Pei HF (2017) Influences of initial water content and roughness on skin friction of piles using FBG technique. Int J Geomech 17(4):04016097. https://doi.org/10.1061/(asce)gm.1943-5622.0000794

    Article  Google Scholar 

  6. Cao W, Yuan J, Wang J, Zhai Y (2013) A damage simulation technique of the full rock creep process considering accelerated creep. J Hunan Univ Nat Sci 40(2):15–20

    Google Scholar 

  7. Chen C, Liang G, Tang Y, Xu Y (2015) Anchoring solid–soil interface behavior using a novel laboratory testing technique. Chin J Geotech Eng 37(6):1115–1122

    Google Scholar 

  8. Chen S, Zhang X, Shahrour I (2015) Composite element model for the bonded anchorage head of stranded wire cable in tension. Int J Numer Anal Meth Geomech 39(12):1352–1368. https://doi.org/10.1002/nag.2364

    Article  Google Scholar 

  9. Chen C, Liang G, Liu X, Tang Y, Xu Y, Liu J, Zhao Y, Li R (2016) A device and method for preparing soil samples used in testing frictional performance of anchor/pile-soil interface. China Patent ZL 2014 1 0176979.8, filed April 29, 2014, and issued July 6, 2016

  10. Chen C, Liang G, Zhang G, Tang Y, Zheng X, Sun Y, Wang S, Wang C (2016) A testing system and method for frictional performance of anchor/pile-soil interface. China Patent ZL 2014 1 0176877.6, filed April 29, 2014, and issued March 30, 2016

  11. Chen C, Zhang G, Zornberg JG, Zheng X (2018) Element nail pullout tests for prediction of soil nail pullout resistance in expansive clays. Geotech Test J. https://doi.org/10.1520/GTJ20170431

    Article  Google Scholar 

  12. Chen W, Liu K, Feng W, Borana L, Yin J (2019) Influence of matric suction on nonlinear time dependent compression behavior of a granular fill material. Acta Geotech. https://doi.org/10.1007/s11440-018-00761-y

    Article  Google Scholar 

  13. Cook RA, Douglas EP, Davis TM, Liu C (2013) Long-term performance of epoxy adhesive anchor systems. NCHRP Report 757, Transportation Research Board, Washington DC

  14. Desai CS, Muqtadir A, Scheele F (1986) Interaction analysis of anchor–soil systems. J Geotech Eng 112(5):537–553. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:5(537)

    Article  Google Scholar 

  15. Deshmukh VB, Dewaikar DM, Choudhury D (2010) Computation of uplift capacity of pile anchors in cohesionless soil. Acta Geotech 5:87–94. https://doi.org/10.1007/s11440-010-0111-6

    Article  Google Scholar 

  16. Ehrlich M, Silva RC (2015) Behavior of a 31 m high excavation supported by anchoring and nailing in residual soil of gneiss. Eng Geol 191:48–60. https://doi.org/10.1016/j.enggeo.2015.01.028

    Article  Google Scholar 

  17. Gurinsky MA (2002) Long-term strength of prestressed ground anchors in creep-sensitive soils. American Society of Civil Engineers, International Deep Foundations Congress 2002—Orlando, Florida, United States (February 14–16, 2002), pp 37–52. https://doi.org/10.1061/40601(256)4

  18. Hong CY, Yin JH, Zhou WH, Pei HF (2012) Analytical study on progressive pullout behavior of a soil nail. J Geotech Geoenviron Eng 138(4):500–507. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000610

    Article  Google Scholar 

  19. Hossain MA, Yin JH (2012) Influence of grouting pressure on the behavior of an unsaturated soil–cement interface. J Geotech Geoenviron Eng 138(2):193–202

    Article  Google Scholar 

  20. Hossain MA, Yin JH (2014) Behavior of a pressure-grouted soil–cement interface in direct shear tests. Int J Geomech 14(1):101–109. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000301

    Article  Google Scholar 

  21. Hou XY, Li XF (1987) Time-effect of soil anchors in submerged soft ground. J Tongji Univ 15(2):147–156

    MathSciNet  Google Scholar 

  22. JTG E40-2007, Test methods of soils for highway engineering, Ministry of Transportation of China, Beijing, China. https://www.codeofchina.com

  23. Kim NK (2003) Performance of tension and compression anchors in weathered soil. J Geotech Geoenviron Eng 129(12):1138–1150. https://doi.org/10.1061/(asce)1090-0241(2003)129:12(1138)

    Article  Google Scholar 

  24. Kim NK, Park JS, Kim SK (2007) Numerical simulation of ground anchors. Comput Geotech 34(6):498–507. https://doi.org/10.1016/j.compgeo.2006.09.002

    Article  Google Scholar 

  25. Kränkel T, Lowke D, Gehlen C (2015) Prediction of the creep behavior of bonded anchors until failure—a rheological approach. Constr Build Mater 75:458–464. https://doi.org/10.1016/j.conbuildmat.2014.11.048

    Article  Google Scholar 

  26. Li P, Liu J, Zhu JB, He HJ (2008) Research on effects of water content on shear creep behavior of weak structural plane of sandstone. Rock Soil Mech 29(7):1865–1871

    Google Scholar 

  27. Littlejohn S (2007) Ground anchorages and anchored structures in service. Thomas Telford, London

    Google Scholar 

  28. Liu L, Xu W (2015) Experimental researches on long-term strength of granite gneiss. Adv Mater Sci Eng 2:1–9. https://doi.org/10.1155/2015/187616

    Article  Google Scholar 

  29. Liu J, Wang L, Pei J, Zheng L, Bian Y (2015) Experimental study on creep deformation and long-term strength of unloading-fractured marble. Eur J Environ Civ Eng 19(s1):97–107. https://doi.org/10.1080/19648189.2015.1064623

    Article  Google Scholar 

  30. Liu Y, Liu C, Kang Y, Wang D, Ye D (2015) Experimental research on creep properties of limestone under fluid–solid coupling. Environ Earth Sci 73(11):7011–7018. https://doi.org/10.1007/s12665-015-4022-6

    Article  Google Scholar 

  31. Liu X, Wang J, Huang J, Jiang H (2017) Full-scale pullout tests and analyses of ground anchors in rocks under ultimate load conditions. Eng Geol 228:1–10. https://doi.org/10.1016/j.enggeo.2017.07.004

    Article  Google Scholar 

  32. Lu P, Zeng J, Sheng Q (2008) Creep tests on soft clay and its empirical models. Rock Soil Mech 29(4):1041–1052

    Google Scholar 

  33. Majda P, Skrodzewicz J (2009) A modified creep model of epoxy adhesive at ambient temperature. Int J Adhes Adhes 29(4):396–404. https://doi.org/10.1016/j.ijadhadh.2008.07.010

    Article  Google Scholar 

  34. Martín LB, Tijani M, Hadj-Hassen F (2011) A new analytical solution to the mechanical behavior of fully grouted rockbolts subjected to pull-out tests. Constr Build Mater 25(2):749–755. https://doi.org/10.1016/j.conbuildmat.2010.07.011

    Article  Google Scholar 

  35. McGown A, Andrawes KZ, Kabir MH (1982) Load-extension testing of geotextiles confined in soil. In: Proceedings of the second international conference on geotextiles, Las Vegas, USA, vol 3, pp 793–798

  36. Menoudy AE, Soudki K (2014) Effects of various environmental exposures and sustainable load levels on the service life of postinstalled adhesive anchors. J Mater Civ Eng 26(5):863–871. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000878

    Article  Google Scholar 

  37. Mesri G, Febres-Cordero E, Shields DR, Castro A (1981) Shear stress–strain–time behavior of clays. Geotechnique 31(4):537–552

    Article  Google Scholar 

  38. National Transportation Safety Board (NTSB) (2007) Ceiling collapse in the interstate 90 connector tunnel Boston Massachusetts, July 10, 2006. Technical Report, Washington DC

  39. Pei HF, Yin JH, Zhu HH, Hong CY (2013) Performance monitoring of a glass fiber-reinforced polymer bar soil nail during laboratory pullout test using FBG sensing technology. Int J Geomech 13(4):467–472. https://doi.org/10.1061/(asce)gm.1943-5622.0000226

    Article  Google Scholar 

  40. Prieto-Muňoz PA, Yin HM, Testa RB (2013) Mechanics of an adhesive anchor system subjected to a pullout load. II: viscoelastic analysis. J Struct Eng 140(2):04013053. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000822

    Article  Google Scholar 

  41. Prisco C, Pisanò F (2014) Numerical modelling and mechanical analysis of an innovative soil anchoring system. Acta Geotech 9:1013–1028. https://doi.org/10.1007/s11440-013-0250-7

    Article  Google Scholar 

  42. Puigvert F, Crocombe AD, Gil L (2014) Fatigue and creep analyses of adhesively bonded anchorages for CFRP tendons. Int J Adhes Adhes 54:143–154. https://doi.org/10.1016/j.ijadhadh.2014.05.013

    Article  Google Scholar 

  43. Sabatini PJ, Pass DG, Bachus RC (1999) Geotechnical engineering circular no. 4—ground anchors and anchored systems. Federal Highway Administration, USA

  44. She C (2009) Research on nonlinear viscoelasto-plastic creep model of rock. Chin J Rock Mechan Eng 28(10):2006–2011

    Google Scholar 

  45. Shen M, Chen H, Zhang Q (2012) Method for determining long-term strength of discontinuity using shear creep test. Chin J Rock Mechan Eng 31(1):1–7

    Google Scholar 

  46. Su LJ, Chan TCF, Shiu YK, Cheung T, Yin JH (2007) Influence of degree of saturation on soil nail pullout resistance in compacted completely decomposed granite fill. Can Geotech J 44(11):1314–1328. https://doi.org/10.1139/T07-056

    Article  Google Scholar 

  47. Su LJ, Chan TCF, Yin JH, Shiu YK, Chiu SL (2008) Influence of overburden pressure on soil–nail pullout resistance in a compacted fill. J Geotech Geoenviron Eng 134(9):1339–1347. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1339)

    Article  Google Scholar 

  48. Su LJ, Yin JH, Zhou WH (2010) Influences of overburden pressure and soil dilation on soil nail pull-out resistance. Comput Geotech 37(4):555–564. https://doi.org/10.1016/j.compgeo.2010.03.004

    Article  Google Scholar 

  49. Sun J (1999) Rheological behavior of geomaterials and its engineering applications. China Architecture and Building Press, Beijing

    Google Scholar 

  50. Tan TK (1964) Determination of the rheological parameters hardening coefficients of clays. In: IUTAM symposium on rheology and soil mechanics, pp 266–273

  51. Tan TK (1982) The mechanical problems for the long-term stability of underground galleries. Chin J Rock Mechan Eng 1(1):1–20

    Google Scholar 

  52. Tan TK, Kang WF (1980) Locked in stresses, creep and dilatancy of rocks, and constitutive equations. Rock Mech 13(1):5–22. https://doi.org/10.1007/BF01257895

    Article  Google Scholar 

  53. Xanthakos PP (1991) Ground anchors and anchored structures. Wiley, Hoboken

    Book  Google Scholar 

  54. Xu HF, Wang FJ, Cheng XX (2007) Pullout creep properties of grouted soil anchors. J Cent South Univ Technol 14(S1):474–477. https://doi.org/10.1007/s11771-007-0310-y

    Article  Google Scholar 

  55. Yang M, Zhao Y, Zhang N (2014) Creep behavior of epoxy-bonded anchor system. Int J Rock Mech Min Sci 67:96–103. https://doi.org/10.1016/j.ijrmms.2014.02.001

    Article  Google Scholar 

  56. Yeo SS, Hsuan YG (2010) Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids. Geotext Geomembr 28:409–421

    Article  Google Scholar 

  57. Yin JH (2015) Fundamental issues of elastic viscoplastic modelling of the time-dependent stress–strain behavior of geomaterials. Int J Geomech 15(5):A4015002. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000485

    Article  Google Scholar 

  58. Yin JH, Zhou WH (2009) Influence of grouting pressure and overburden stress on the interface resistance of a soil nail. J Geotech Geoenviron Eng 135(9):1198–1208. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000045

    Article  Google Scholar 

  59. Zhao D, Hattab M, Yin ZY, Hicher PY (2018) Dilative behavior of kaolinite under drained creep condition. Acta Geotech. https://doi.org/10.1007/s11440-018-0686-x

    Article  Google Scholar 

  60. Zornberg JG, Byler BR, Knudsen J (2004) Creep of geotextiles using time-temperature superposition methods. J Geotech Geoenviron Eng 130(11):1158–1168

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by National Natural Science Foundation of China (Grant No. 50878082 and Grant No. 41572298) and the China Scholarship Council (Grant No. 201506130020). The authors appreciate their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Chen, C., Zornberg, J.G. et al. Interface creep behavior of grouted anchors in clayey soils: effect of soil moisture condition. Acta Geotech. 15, 2159–2177 (2020). https://doi.org/10.1007/s11440-019-00907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00907-6

Keywords

Navigation