Skip to main content
Log in

A methodology to calibrate and to validate effective solid potentials of heterogeneous porous media from computed tomography scans and laboratory-measured nanoindentation data

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Built on the framework of effective interaction potentials using lattice element method, a methodology to calibrate and to validate the elasticity of solid constituents in heterogeneous porous media from experimentally measured nanoindentation moduli and imported scans from advanced imaging techniques is presented. Applied to computed tomography (CT) scans of two organic-rich shales, spatial variations of effective interaction potentials prove instrumental in capturing the effective elastic behavior of highly heterogeneous materials via the first two cumulants of experimentally measured distributions of nanoindentation moduli. After calibration and validation steps while implicitly accounting for mesoscale texture effects via CT scans, Biot poroelastic coefficients are simulated. Analysis of stress percolation suggests contrasting pathways for load transmission, a reflection of microtextural differences in the studied cases. This methodology to calibrate elastic energy content of real materials from advanced imaging techniques and experimental measurements paves the way to study other phenomena such as wave propagation and fracture while providing a platform to fine-tune effective behavior of materials given advancements in additive manufacturing and machine learning algorithms .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Abedi S, Slim M, Hofmann R, Bryndzia T, Ulm FJ (2016) Nanochemo-mechanical signature of organic-rich shales: a coupled indentation-EDX analysis. Acta Geotech 11:559–572

    Article  Google Scholar 

  2. Abousleiman Y, Hull K, Han Y, Al-Muntasheri G, Hosemann P, Parker S, Howard C (2016) The granular and polymer composite nature of kerogen-rich shale. Acta Geotech 11(3):573–594

    Article  Google Scholar 

  3. Affes R, Delenne JY, Monerie R, Radjai F, Topin V (2012) Tensile strength and fracture of cemented granular aggregates. Eur Phys J E Soft Matter 35:117

    Article  Google Scholar 

  4. Aleksandrov K, Ryzhova T (1961) Elastic properties of rock-forming minerals. II. Layered silicates. Bull USSR Acad Sci Geophys Ser 9:1165

    Google Scholar 

  5. Bathe KJ (2014) Finite element procedure. Prentice Hall, Upper Saddle River

    Google Scholar 

  6. Beneviste Y (1987) A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6(2):147

    Article  Google Scholar 

  7. Beran M (1968) Statistical continuum theories. Wiley, London

    MATH  Google Scholar 

  8. Beroz F, Jawerth L, Munster S, Weitz D, Broedersz C (2017) Physical limits to biomechanical sensing in disordered fibre network. Nat Commun 8:16096

    Article  Google Scholar 

  9. Berryman J (2005) Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. J Mech Phys Solids 53(10):2141

    Article  MathSciNet  Google Scholar 

  10. Berthonneau J, Grauby O, Abuhaikal M, Pellenq RJM, Ulm FJ, Van Damme H (2016) Evolution of organo-clay composites with respect to thermal maturity in type II organic-rich source rocks. Geochim Cosmochim Acta 195:68–83

    Article  Google Scholar 

  11. Biot M (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155

    Article  Google Scholar 

  12. Bousige C, Ghimbeu C, Vix-Guterl C, Pomerantz A, Suleimenova A, Vaughan G, Garbarino G, Feygenson M, Wildgruber C, Ulm FJ, Pellenq RJ, Coasne B (2016) Realistic molecular model of kerogen’s nanostructure. Nat Mater 15:576–582

    Article  Google Scholar 

  13. Budiansky B (1965) On the elastic moduli for some heterogeneous materials. J Mech Phys Solids 13:223

    Article  Google Scholar 

  14. Christoffersen J, Mehrabadi M, Nemat-Nasser S (1984) A micro-mechanical description of granular material behavior. J Appl Mech 48(2):339–344

    Article  Google Scholar 

  15. Constantinidies G, Ravi Chandran K, Ulm FJ, Van Vilet K (2006) Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater Sci Eng A 430(1–2):189–202

    Article  Google Scholar 

  16. Deirieh A, Ortega J, Ulm FJ (2012) Nanochemomechanical assessment of shale: a coupled WDS-indentation analysis. Acta Geotech 7(4):271–295

    Article  Google Scholar 

  17. Delafargue A, Ulm FJ (2004) Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Int J Solids Struct 41:7351

    Article  Google Scholar 

  18. Dimas L, Giesa T, Buehler M (2014) Coupled continuum and discrete analysis of random heterogeneous materials: elasticity and fracture. J Mech Phys Solids 63:481–490

    Article  MathSciNet  Google Scholar 

  19. Dormieux L, Kondo D, Ulm FJ (2006) Microporomechanics. Wiley, Chichester

    Book  Google Scholar 

  20. Dormieux L, Molinary A, Kondo D (2002) Micromechanical approach to the behavior of poroelastic materials. J Mech Phys Solids 50:571

    Article  MathSciNet  Google Scholar 

  21. Ebrahimi D, Whittle A, Pellenq RJM (2014) Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets. J Chem Phys 140:154309

    Article  Google Scholar 

  22. Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A 241:376

    Article  MathSciNet  Google Scholar 

  23. Gnedenko B, Kolmogorov A (1954) Limit distributions for sums of independent random variables. Addison-Wesley, Boston

    MATH  Google Scholar 

  24. Hantal G, Brochard L, Laubie H, Ebrahimi D, Pellenq JM, Ulm FJ, Cosane B (2014) Atomic-scale modeling of elastic and failure properties of clays. Mol Phys Int J Interface Chem Phys 112:1294

    Google Scholar 

  25. Herrmann H, Roux S (1990) Statistical models for the fracture of disordered media. Random materials and processes. Elsevier, New York

    Google Scholar 

  26. Hershey A (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystal. J Appl Mech 21:226–240

    MATH  Google Scholar 

  27. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222

    Article  MathSciNet  Google Scholar 

  28. Hubler M, Gelb J, Ulm FJ (2017) Microtexture analysis of gas shale by XRM imaging. J Nanomech Micromech 7(3):564

    Article  Google Scholar 

  29. Johnson S (2009) The NLOPT nonlinear-optimization package. http://ab-initio.mit.edu/nlopt/

  30. Kardar M (2007) Statistical physics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Katahara K (1996) Clay minerals elastic properties. In: Proceedings of the 66th SEG annual meeting expanded technical program abstracts

  32. Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z Phys 151(4):504–518

    Article  Google Scholar 

  33. Larsson P, Giannakopoulos A, SoDerlund E, Rowcliffe D, Vetergaard R (1996) Analysis of Berkovich indentation. Int J Solids Struct 33:221

    Article  Google Scholar 

  34. Laubie H, Monfared S, Radjai F, Pellenq RM, Ulm FJ (2017) Disorder-induced stiffness degradation of highly disordered porous materials. J Mech Phys Solids 106:207–228

    Article  MathSciNet  Google Scholar 

  35. Laubie H, Monfared S, Radjai F, Pellenq RM, Ulm FJ (2017) Effective potentials and elastic properties in the lattice-element method: isotropy and transverse isotropy. J Nanomech Micromech 7:3

    Article  Google Scholar 

  36. Laubie H, Radjai F, Pellenq R, Ulm FJ (2017) Stress transmission and failure in disordered porous media. Phys Rev Lett 119:075501

    Article  Google Scholar 

  37. Masoero E, Del Gado E, Pellenq RM, Ulm FJ, Yip S (2012) Nanostructure and nanomechanics of cement: polydisperse colloidal packing. Phys Rev Lett 109:3–6

    Article  Google Scholar 

  38. Masoero E, Del Gado E, Pellenq RM, Ulm FJ, Yip S (2014) Nano-scale mechanics of colloidal C-S-H gels. Soft Matter 10:491

    Article  Google Scholar 

  39. Mavko G, Mukerji T, Dvorkin J (2003) Rock physics handbook: tools for seismic analysis in porous media. Cambridge University Press, Cambridge

    Google Scholar 

  40. Monfared S, Laubie H, Radjai F, Pellenq RM, Ulm FJ (2017) Mesoscale poroelasticity of heterogeneous media. J Nanomech Micromech 7(4):04017016

    Article  Google Scholar 

  41. Monfared S, Ulm FJ (2016) A molecular informed poroelastic model for organic-rich, naturally occurring porous geocomposites. J Mech Phys Solids 88:186

    Article  MathSciNet  Google Scholar 

  42. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571

    Article  Google Scholar 

  43. Norris A (2014) Mechanics of elastic networks. Proc R Soc A 470:20140522

    Article  MathSciNet  Google Scholar 

  44. Powell M (1994) A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez S, Hennart J-P (eds) Advances in optimization and numerical analysis. Kluwer Academic, Dordrecht

    Google Scholar 

  45. Powell M (1998) Direct search algorithms for optimization calculations. Acta Numer 7:287

    Article  MathSciNet  Google Scholar 

  46. Radjai F, Jean M, Moreau JJ, Roux S (1996) Force distribution in dense two-dimensional granular systems. Phys Rev Lett 77:274

    Article  Google Scholar 

  47. Seewald J (2003) Organic-inorganic interactions in petroleum-producing sedimentary basins. Nature 426:327–333

    Article  Google Scholar 

  48. Semnani SJ, Borja RI (2017) Quantifying the heterogeneity of shale through statistical combination of imaging across scales. Acta Geotech 12:1193–1205

    Article  Google Scholar 

  49. Seo YS, Ichikawa Y, Kawamura K (1999) Stress-strain response of rock forming minerals by MD simulations. Mater Sci Res Int 5:13

    Google Scholar 

  50. Silling S, Lehoucq R (2010) Peridynamic theory of solid mechanics, pp. 87185–1322 . Tech. Rep. 1, Sandia National Laboratories, Albuquerque, New Mexico, USA

  51. Suquet M (1987) Elements of homogenization for inelastic solid mechanics. In: Homogenization techniques for composite media. Springer, Berlin, pp 193–278

    Chapter  Google Scholar 

  52. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6:454

    Article  Google Scholar 

  53. Tissot B, Welte D (1984) Petroleum formation and occurrence. Springer, Berlin

    Book  Google Scholar 

  54. Topin V, Delenne JY, Radjai F, Brendel L, Mabille F (2007) Strength and failure of cemented granular matter. Eur Phys J E Soft Matter 23:413

    Article  Google Scholar 

  55. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, Berlin

    Book  Google Scholar 

  56. Ulm FJ, Vandamme M, Bobko C, Ortega J, Tai K, Ortiz C (2007) Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J Am Chem Soc 90(9):2677–2692

    Google Scholar 

  57. Vaughan M, Guggenheim S (1986) Elasticity of muscovite and its relationship to crystal structure. J Geophys Res 91:4657

    Article  Google Scholar 

  58. Veneziano D (2003) Computational fluid and solid mechanics. Elsevier, Cambridge

    Google Scholar 

  59. Weibull W (1939) A statistical theory of the strength of materials. R Swed Inst Eng Res (Ingenors Vetenskaps Akadiens Handlingar) 151:1

    Google Scholar 

  60. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    MATH  Google Scholar 

  61. Younis S, Kauffmann Y, Bloch L, Zolotoyabko E (2012) Inhomogeneity of nacre lamellae on the nanometer length scale. Cryst Growth Des 12(9):4574–4579

    Article  Google Scholar 

  62. Zaoui A (2002) Continuum micromechanics: a survey. J Eng Mech 8:808

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by X-Shale Hub: the Science and Engineering of Gas Shale, a collaboration between Shell, Schlumberger, and the Massachusetts Institute of Technology, enabled through MIT’s Energy Initiative. Authors would like to acknowledge Vincent Richefeu (Universite Joseph Fourier), Jean-Yves Delenne (Montpellier SupAgro) and Saeid Nezamabadi (Universite de Montpellier) who provided the backbone of the LEM code used for simulations. FR would like to acknowledge the support of the ICoME2 Labex (ANR-11-LABX-0053) and the A\(*\)MIDEX projects (ANR-11-IDEX-0001-02) cofunded by the French program Investissements d Avenir, managed by the French National Reseach Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Monfared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monfared, S., Laubie, H., Radjai, F. et al. A methodology to calibrate and to validate effective solid potentials of heterogeneous porous media from computed tomography scans and laboratory-measured nanoindentation data. Acta Geotech. 13, 1369–1394 (2018). https://doi.org/10.1007/s11440-018-0687-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0687-9

Keywords

Navigation