Skip to main content
Log in

Nanoscale origin of the thermo-mechanical behavior of clays

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

We investigate the physics behind the complex thermo-mechanical behavior of clays. Depending on their loading history, clays exhibit thermal expansion or contraction, reversible or irreversible, and of much larger magnitude than for usual solids. This anomalous behavior is often attributed to water adsorption, but a proper link between adsorption and thermo-mechanics is still needed, which is the object of this paper. We propose a conceptual model starting from the scale of the adsorption up to the scale of the geomaterial, which successfully explains the thermo-mechanical behavior of clays. Adsorption takes place between clay layers at the nanometer scale. The mechanics of the clay layers is known to be strongly affected by adsorption, e.g., swelling with humidity increase. Here we investigate the effect of drained heating and show that an increase in temperature decreases the amplitude of the confining pressure oscillations with the basal spacing. More subtle is a shift of the oscillations to larger basal spacing. To relate the mechanics of a clay layer to that of the geomaterial, we propose an upscaling in two steps: the clay particle and the clay matrix with inclusions. We model the particle as a stack of layers in which different hydration states (number of water layers in a nanopore) can coexist. This description builds on the theory of shape memory alloys, the physics of which is quite analogous to the case of a clay particle. Upscaling to the scale of the clay matrix with inclusions is performed with conventional self-consistent homogenization. The conceptual model is confronted to three typical experiments of the thermo-mechanical behavior of clay. It captures all the anomalous behaviors of clays: expansion/contraction, reversibility/irreversibility, role of loading history, and impact on preconsolidation pressure. Moreover, it offers a possible nanoscale interpretation of each of these anomalous behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The notation \(\otimes\) is defined as \(\left( \underline{\underline{a}}\otimes \underline{\underline{b}}\right) _{ijkl}=a_{ij}b_{kl}\)

  2. \(\left( {\mathbb {A}}:{\mathbb {B}}\right) _{ijkl}=\sum _{mn}{\mathbb {A}}_{ijmn}{\mathbb {B}}_{mnkl}\)

  3. The notation \(\underline{\overline{\otimes }}\) represents a special product defined as follows: \(\left( \underline{\underline{a}}\underline{\overline{\otimes }}\underline{\underline{b}}\right) _{ijkl}=\frac{1}{2}\left( a_{ik}b_{jl}+a_{il}b_{jk}\right)\).

  4. The product \(\otimes\) between one dimensional vectors is defined as follows: \(\left( \underline{a}\otimes \underline{b}\right) _{ij}=a_{i}b_{j}\).

References

  1. Abedi S, Slim M, Ulm F-J (2016) Nanomechanics of organic-rich shales: the role of thermal maturity and organic matter content on texture. Acta Geotech 11(4):775–787

    Article  Google Scholar 

  2. Abousleiman YN, Hull KL, Han Y, Al-Muntasheri G, Hosemann P, Parker S, Howard CB (2016) The granular and polymer composite nature of kerogen-rich shale. Acta Geotech 11(3):573–594

    Article  Google Scholar 

  3. Abuel-Naga HM, Bergado DT, Bouazza A, Ramana GV (2007) Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling. Can Geotech J 44(8):942–956

    Article  Google Scholar 

  4. Baldi G, Hueckel T, Peano A, Pellegrini R (1991) Developments in modelling of thermo-hydro-geomechanical behaviour of Boom clay and clay-based buffer materials. Commission of the European Communities. https://publications.europa.eu/en/publication-detail/-/publication/06dcec3d-35fe-4ed9-9968-9969fc5e06e8

  5. Baldi G, Hueckel T, Pellegrini R (1988) Thermal volume changes of the mineral–water system in low-porosity clay soils. Can Geotech J 25(4):807–825

    Article  Google Scholar 

  6. Bérend I, Cases J, François M, Uriot J, Michot L, Masion A, Thomas F (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites; 2, The Li+, Na+, K+, Rb+ and Cs+-exchanged forms. Clays Clay Miner 43(3):324–336

    Article  Google Scholar 

  7. Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford

    MATH  Google Scholar 

  8. Boisson JY, Billotte J, Norotte V (1993) Etude au laboratoire de l’influence de la température sur le fluage des roches argileuses. Commission of the European Communities. https://publications.europa.eu/en/publication-detail/-/publication/1ebd1eb1-a050-42df-a231-1a8d0f5211ef

  9. Bornert M, Bretheau T, Gilormini P (eds) (2001) Homogeneisation en mécanique des matériaux 2. Comportements non linéaires et problèmes ouverts. Hermes Science, Paris

    MATH  Google Scholar 

  10. Brochard L, Vandamme M, Pellenq RJM (2012) Poromechanics of microporous media. J Mech Phys Solids 60(4):606–622

    Article  MathSciNet  MATH  Google Scholar 

  11. Burghignoli A, Desideri A, Miliziano S (1992) Deformability of clays under non isothermal conditions. Rivista Italiana di Geotecnica 4:227

    Google Scholar 

  12. Burghignoli A, Desideri A, Miliziano S (1995) Discussion on volume change of clays induced by heating as observed in consolidation tests. Soils Found 35(3):122–124

    Google Scholar 

  13. Campanella RG, Mitchell JK (1968) Influence of temperature variations on soil behavior. J Soil Mech Found Div 94(3):609–734

    Google Scholar 

  14. Carrier B (2013) Influence of water on the short-term and long-term mechanical properties of swelling clays: experiments on self-supporting films and molecular simulations. Ph.D. thesis, Université Paris Est

  15. Carrier B, Vandamme M, Pellenq RJ-M, Van Damme H (2014) Elastic properties of swelling clay particles at finite temperature upon hydration. J Phys Chem C 118(17):8933–8943

    Article  Google Scholar 

  16. Cekerevac C, Laloui L (2004) Experimental study of thermal effects on the mechanical behaviour of a clay. Int J Num Anal Methods Geomech 28(3):209–228

    Article  Google Scholar 

  17. Coussy O (2010) Mechanics and physics of porous solids. Wiley, Chichester

    Book  Google Scholar 

  18. Cui YJ, Sultan N, Delage P (2000) A thermomechanical model for saturated clays. Can Geotech J 37:607–620

    Article  Google Scholar 

  19. da Silva GJ, Fossum JO, DiMasi E, Måløy KJ (2003) Hydration transitions in a nanolayered synthetic silicate: a synchrotron X-ray scattering study. Phys Rev B 67(9):094114

    Article  Google Scholar 

  20. Delage P, Sultan N, Cui YJ (2000) On the thermal consolidation of Boom clay. Can Geotech J 37(2):343–354

    Article  Google Scholar 

  21. Dormieux L, Kondo D, Ulm F-J (2006) Microporomechanics, vol 1. Wiley, Chichester

    Book  MATH  Google Scholar 

  22. Ferrage E, Hubert F, Tertre E, Delville A, Michot LJ, Levitz P (2015) Modeling the arrangement of particles in natural swelling-clay porous media using three-dimensional packing of elliptic disks. Phys Rev E 91:062210

    Article  Google Scholar 

  23. Ferrage E, Lanson B, Michot LJ, Robert J-L (2010) Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 1. Results from X-ray diffraction profile modeling. J Phys Chem C 114(10):4515–4526

    Article  Google Scholar 

  24. Ferrage E, Lanson B, Sakharov BA, Drits VA (2005) Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. Am Mineral 90(8–9):1358–1374

    Article  Google Scholar 

  25. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, London

    MATH  Google Scholar 

  26. Graham J, Tanaka N, Crilly T, Alfaro M (2001) Modified Cam-Clay modelling of temperature effects in clays. Can Geotech J 38(3):608–621

    Article  Google Scholar 

  27. Hellmich C, Jean-Francois B, Luc D (2004) Mineralcollagen interactions in elasticity of bone ultrastructure a continuum micromechanics approach. Eur J Mech A/Solids 23(5):783–810

    Article  MATH  Google Scholar 

  28. Honorio T, Brochard L, Vandamme M, Stefanou I, Ghabezloo S, Bornert M (2017) Stability of hydrated clay layers from molecular simulations. In Paper submitted to Biot conference 2017

  29. Hueckel T, Baldi G (1990) Thermoplasticity of saturated clays: experimental constitutive study. J Geotech Eng 116(12):1778–1796

    Article  Google Scholar 

  30. Hueckel T, Borsetto M (1990) Thermoplasticity of saturated soils and shales: constitutive equations. J Geotech Eng 116(12):1765–1777

    Article  Google Scholar 

  31. Jacob I (1992) Intermolecular & surface forces, 2nd edn. Academic Press, London

    Google Scholar 

  32. Israelachvili JN, Pashley RM (1983) Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306(5940):249–250

    Article  Google Scholar 

  33. Laird DA, Shang C, Thompson ML (1995) Hysteresis in crystalline swelling of smectites. J Colloid Interface Sci 171(1):240–245

    Article  Google Scholar 

  34. Laloui L, Cekerevac C (2003) Thermo-plasticity of clays: an isotropic yield mechanism. Comput Geotech 30(8):649–660

    Article  Google Scholar 

  35. Masson R (2008) New explicit expressions of the Hill polarization tensor for general anisotropic elastic solids. Int J Solids Struct 45:757–769

    Article  MATH  Google Scholar 

  36. Mckinstry HA (1965) Thermal expansion of clay minerals. Am Mineral 50(1–2):212–222

    Google Scholar 

  37. Meunier A (2005) Clays. Springer, Berlin

    Google Scholar 

  38. Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, Hoboken

    Google Scholar 

  39. Monfared M, Sulem J, Delage P, Mohajerani M (2011) A laboratory investigation on thermal properties of the opalinus claystone. Rock Mech Rock Eng 44(6):735–747

    Article  Google Scholar 

  40. Moritz L (1995) Geotechnical properties of clay at elevated temperatures. Technical report, Swedish Geotechnical Institute

  41. Morodome S, Kawamura K (2009) Swelling behavior of Na- and Ca-montmorillonite up to 150C by in situ X-ray diffraction experiments. Clays Clay Miner 57(2):150–160

    Article  Google Scholar 

  42. Paaswell Robert E (1967) Temperature effects on clay soil consolidation. J Soil Mech Found Div 93(3):9–22

    Google Scholar 

  43. Picard J-M (1994) Ecrouissage thermique des argiles saturées: application au stockage des déchets radioactifs. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées

  44. Pichler B, Hellmich C (2010) Estimation of influence tensors for eigenstressed multiphase elastic media with nonaligned inclusion phases of arbitrary ellipsoidal shape. J Eng Mech 136(8):1043–1053

    Article  Google Scholar 

  45. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  MATH  Google Scholar 

  46. Plum RL, Esrig MI (1969) Some temperature effects on soil compressibility and pore water pressures. Highw Res Board Spec Rep 103:231–242

    Google Scholar 

  47. Smith DE, Wang Y, Chaturvedi A, Whitley HD (2006) Molecular simulations of the pressure, temperature, and chemical potential dependencies of clay swelling. J Phys Chem B 110(40):20046–20054

    Article  Google Scholar 

  48. Sultan N, Delage P, Cui YJ (2002) Temperature effects on the volume change behaviour of Boom clay. Eng Geol 64(2–3):135–145

    Article  Google Scholar 

  49. Suter JL, Coveney PV, Greenwell HC, Thyveetil M-A (2007) Large-scale molecular dynamics study of montmorillonite clay: emergence of undulatory fluctuations and determination of material properties. J Phys Chem C 111(23):8248–8259

    Article  Google Scholar 

  50. Tambach TJ, Bolhuis PG, Hensen EJM, Smit B (2006) Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states. Langmuir 22(3):1223–1234

    Article  Google Scholar 

  51. Tang A-M, Cui Y-J, Barnel N (2008) Thermo-mechanical behaviour of a compacted swelling clay. Géotechnique 58(1):45–54

    Article  Google Scholar 

  52. Teich-McGoldrick SL, Greathouse JA, Jové-Colón CF, Cygan RT (2015) Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: comparison of temperature, interlayer cation, and charge location effects. J Phys Chem C 119(36):20880–20891

    Article  Google Scholar 

  53. Tidfors M, Sällfors G (1989) Temperature effect on preconsolidation pressure. Geotech Test J 12(1):93–97

    Article  Google Scholar 

  54. Towhata I, Kuntiwattanaku P, Seko I, Ohishi K (1993) Volume change of clays induced by heating as observed in consolidation tests. Soils Found 33(4):170–183

    Article  Google Scholar 

  55. Wada N, Hines DR, Ahrenkiel SP (1990) X-ray-diffraction studies of hydration transitions in Na vermiculite. Phys Rev B 41(18):12895–12901

    Article  Google Scholar 

  56. Walpole LJ (1981) Elastic behavior of composite materials: theoretical foundations. Adv Appl Mech 21:169–242

    Article  MATH  Google Scholar 

  57. Whitley HD, Smith DE (2004) Free energy, energy, and entropy of swelling in Cs, Na, and Sr montmorillonite clays. J Chem Phys 120(11):5387

    Article  Google Scholar 

  58. Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816

    Article  Google Scholar 

  59. Zhang Z, James RD, Müller S (2009) Energy barriers and hysteresis in martensitic phase transformations. Acta Mater 57(15):4332–4352

    Article  Google Scholar 

  60. Zhu D-M, Dash JG (1998) Evolution of multilayer Ar and Ne films from two-dimensional to bulk behavior. Phys Rev B 38(16):11673–11687

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the project TEAM2ClayDesicc from the French National Research Agency (Agence Nationale de la Recherche, contract ANR-14-CE05-0023-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Brochard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brochard, L., Honório, T., Vandamme, M. et al. Nanoscale origin of the thermo-mechanical behavior of clays. Acta Geotech. 12, 1261–1279 (2017). https://doi.org/10.1007/s11440-017-0596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0596-3

Keywords

Navigation