Skip to main content

Advertisement

Log in

A new model for the description of the heat transfer for plane thermo-active geotechnical systems based on thermal resistances

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In this paper, a thermal resistance model for an energy wall using the example of thermo-active seal panels is presented. In the developed model, the resistances of the pipes as well as the resistance of the structure itself are considered. The resistance model is transferred to a 2D finite difference model, which itself is implemented into the general 3D subsurface heat and flow transport code SHEMAT-Suite. This coupling of a semi-analytical model with a numerical code avoids a complete discretisation of the model domain and thus enables fast computing times. This new approach has been verified by pure finite element simulations and by laboratory tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adam D, Markiewicz R (2009) Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique 59(3):229–236

    Article  Google Scholar 

  2. Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56(2):81–122

    Article  Google Scholar 

  3. Clauser C (ed) (2003) Numerical simulation of reactive flow in hot aquifers using SHEMAT and processing SHEMAT. Springer, Heidelberg

    Google Scholar 

  4. Franzius JN, Pralle N (2011) Turning segmental tunnels into sources of renewable energy. Proc Inst Civ Eng 164(1):35–40

    Article  Google Scholar 

  5. Glück B (1982) Strahlungsheizung—Theorie und Praxis. C.F. Müller, Karlsruhe

    Google Scholar 

  6. Lamarche L, Kajil S, Beauchamp B (2010) A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems. Geothermics 39(2):187–200

    Article  Google Scholar 

  7. Koschenz M, Dorer V (1999) Interaction of an air system with concrete core conditioning. Energy Build 30(1999):139–145

    Article  Google Scholar 

  8. Kürten S (2011) Use of geothermal energy with thermo-active seal panels. In: Barends et al. (ed) Geotechnical engineering: new horizons. doi:10.3233/978-1-60750-808-3-327

  9. Kürten S, Ziegler M, Olischläger V, Ehrenberg H (2012) Untersuchungen zur Effizienz von thermo-aktiven Abdichtungselementen zur thermischen Nutzung des Untergrunds. Bautechnik 89(3):192–199

    Article  Google Scholar 

  10. Kürten S, Ziegler M, Ehrenberg H, Mottaghy D (2013) Beschreibung des Einflusses einer Grundwasserströmung auf den Wärmeertrag von flächigen thermo-aktiven Bauteilen. In: österreichischer Ingenieur- und Architekten-Verein (ed) 9. österreichische Geotechniktagung mit “Vienna-Terzaghi Lecture”, 24. und 25. Jänner 2013: 173–182, ISBN 978-3-902450-02-9

  11. Kürten S, Mottaghy D, Ziegler M (2013) Wärmeübergangswiderstand bei flächigen thermo-aktiven Bauteilen am Beispiel thermo-aktiver Abdichtungselemente. Bautechnik 90(7):387–394

    Article  Google Scholar 

  12. Mihalakakou G (2002) On estimating soil surface temperature profiles. Energy Build 34:251–259

    Article  Google Scholar 

  13. Mottaghy D, Dijkshoorn L (2012) Implementing an effective finite difference formulation for borehole heat exchangers into a heat and mass transport code. Renew Energy 45:59–71

    Article  Google Scholar 

  14. Rath V, Wolf A, Bücker M (2006) Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification and synthetic examples. Geophys J Int 167(1):453–466

    Article  Google Scholar 

  15. Schneider M, Moormann C (2010) GeoTU6—a geothermal research project for tunnels. Tunnel 2:14–21

    Google Scholar 

  16. VDI-Wärmeatlas (2006) 10. Auflage. Springer, Heidelberg

    Google Scholar 

Download references

Acknowledgments

The development of the thermo-active seal panels was funded by the Federal Office for Building and Regional Planning (BBR) and was done in cooperation with the company NAUE GmbH & Co. KG. The development of the thermal resistance model is funded by the “Deutsche Bundesstiftung Umwelt” (DBU). The authors thanks all of them for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Kürten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kürten, S., Mottaghy, D. & Ziegler, M. A new model for the description of the heat transfer for plane thermo-active geotechnical systems based on thermal resistances. Acta Geotech. 10, 219–229 (2015). https://doi.org/10.1007/s11440-014-0311-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-014-0311-6

Keywords

Navigation