Skip to main content
Log in

Isotope effect of the stereodynamics in the reactions F+HCl→HF+Cl and F+DCl→DF+Cl

  • Article
  • Atomic & Molecular Physics
  • Published:
Chinese Science Bulletin

Abstract

Using a new ground-state ab initio potential energy surface reported by Deskevich et al., the product polarizations in the reactions F+HCl→HF+Cl and F+DCl→DF+Cl were studied by employing the quasi-classical trajectory method. At a collision energy of 10 kcal/mol, the four generalized polarization-dependent differential cross-sections (2π/σ)(dσ00/dω t ), (2π/σ)(dσ20/dω t ), (2π/σ)(dσ22+/dω t ) and (2π/σ)(dσ21−/dω t ) were calculated in the center-of-mass frame. The distribution of the angle between k and j′, P r ), the distribution of the dihedral angle denoting the k-k′-j′ correlation, P r ), and the angular distribution of the product rotational vectors in the form of polar plots P r , φ r ) were also calculated. The evident influence of isotope substitution on the product polarization is revealed. This effect may result from the different mass factors of the two reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding A M G, Kirsch L J, Perry D S, et al. Effect of changing reagent energy on reaction probability and product energy-distribution. Faraday Discuss Chem Soc, 1973, 55: 252–276

    Article  Google Scholar 

  2. Würzberg E, Houston P L. The temperature dependence of hydrogen abstraction reactions: F+HCl, F+HBr, F+DBr, and F+HI. J Chem Phys, 1980, 72: 5915–5923

    Article  Google Scholar 

  3. Merritt J M, Küpper J, Miller R E. Entrance channel X-HF (X = Cl, Br and I) complexes studied by high-resolution infrared laser spectroscopy in helium nanodroplets. Phys Chem Chem Phys, 2005, 7: 67–78

    Article  Google Scholar 

  4. Zolot A M, Nesbitt D J. Quantum state resolved scattering dynamics of F+HCl→HF(v,J) +Cl. J Chem Phys, 2007, 127: 114319

    Article  Google Scholar 

  5. Last I, Baer M. Three-dimensional DIM-3C potential energy surfaces for the reactions H + XY and X + HY (X, Y = F, Cl, Br, I). J Chem Phys, 1984, 80: 3246–3252

    Article  Google Scholar 

  6. Sayos R, Hernando J, Hijazo J, et al. An analytical potential energy surface of the HClF (2 A′) system based on ab initio calculations. Variational transition state theory study of the H+ClF→F+HCl, Cl+HF and F+HCl→Cl+HF reactions and their deuterium isotope variants. Phys Chem Chem Phys, 1999, 1: 947–956

    Article  Google Scholar 

  7. Sayos R, Hernando J, Francia R, et al. Quasiclassical trajectory study of the H+ClF→F+HCl, Cl+HF and F+HCl→Cl+HF reactions and their deuterium isotope variants on a new (2 A′) ab initio potential energy surface. Phys Chem Chem Phys, 2000, 2: 523–533

    Article  Google Scholar 

  8. Tang B Y, Yang B H, Han K L, et al. Time-dependent quantum wave packet studies of the F+HCl and F+DCl reactions. J Chem Phys, 2000, 113: 10105–10113

    Article  Google Scholar 

  9. Deskevich M P, Hayes M Y, Takahashi K, et al. Multireference configuration interaction calculations for the F(2P) +HCl→HF+Cl(2P) reaction: A correlation scaled ground state (12 A′) potential energy surface. J Chem Phys, 2006, 124: 224303

    Article  Google Scholar 

  10. Hayes M Y, Deskevich M P, Nesbitt D J, et al. A simple picture for the rotational enhancement of the rate for the F+HCl→ HF+Cl reaction: A dynamical study using a new ab initio potential energy surface. J Phys Chem A, 2006, 110: 436–444

    Article  Google Scholar 

  11. Skodje R T. Adiabatic separatrix crossing theory for heavy-lightheavy chemical reactions in three dimensions. J Chem Phys, 1991, 95: 7234–7248

    Article  Google Scholar 

  12. Skodje R T, Davis M J. A phase space analysis of the collinear I+HI reaction. J Chem Phys, 1988, 88: 2429–2457

    Article  Google Scholar 

  13. Cary J R, Skodje R T. Reaction probability for sequential separatrix crossings. Phys Rev Lett, 1988, 61: 1795–1798

    Article  Google Scholar 

  14. Skodje R T. Uniform adiabatic invariance analysis of chemical reaction dynamics. J Chem Phys, 1989, 90: 6193–6212

    Article  Google Scholar 

  15. Davis M J, Skodje R T. Chemical reactions as problems in nonlinear dynamics. Adv Class Trajectory Meth, 1992, 3: 77–164

    Google Scholar 

  16. Clary D C. Rates of chemical reactions dominated by long-range inter-molecular forces. Mol Phys, 1984, 53: 3–21

    Article  Google Scholar 

  17. Sun Z G, Lee S Y, Zhang D H. Time-dependent quantum wave packet study of F+HCl and F+DCl reactions. Chin J Chem Phys, 2007, 20: 365–371

    Article  Google Scholar 

  18. Quéméner G, Balakrishnan N. Cold and ultracold chemical reactions of F+HCl and F+DCl. J Chem Phys, 2008, 128: 224304

    Article  Google Scholar 

  19. Defazio P, Petrongolo C. Rotational, steric, and Coriolis effects on the F+HCl→HF+Cl reaction on the 12 A′ ground-state surface. J Phys Chem A, 2009, 113: 4208–4212

    Article  Google Scholar 

  20. Assafrão D, Mohallem J R. The isotopic dipole moment of HDO. J Phys B, 2007, 40: F85–F91

    Article  Google Scholar 

  21. Yang X M, Xie D Q, Zhang D H. Dynamical resonance in F+H2 chemical reaction and rotational excitation effect. Chinese Sci Bull, 2007, 52: 1009–1012

    Article  Google Scholar 

  22. Zhou L C, Shi Y, Liu J Y, et al. The effect of hydrogen-bond in alcoholic solvent on the solvation ultrafast dynamics of oxazine 750 dye. Chinese Sci Bull, 2008, 53: 1951–1954

    Article  Google Scholar 

  23. Pu L, Sun Y M, Zhang Z B. Hydrogen bonding of single acetic acid with water molecules in dilute aqueous solutions. Sci China Ser B-Chem, 2009, 52: 2219–2225

    Article  Google Scholar 

  24. Wang J F, Zhang C C, Wei D Q, et al. Docking and molecular dynamics studies on CYP2D6. Chinese Sci Bull, 2010, 55: 1877–1880

    Article  Google Scholar 

  25. Zhao G J, Liu J Y, Zhou L C, et al. Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: A new fluorescence quenching mechanism. J Phys Chem B, 2007, 111: 8940–8945

    Article  Google Scholar 

  26. Aoiz F J, Brouard M, Enriquez P A. Product rotational polarization in photon-initiated bimolecular reactions. J Chem Phys, 1996, 105: 4964–4982

    Article  Google Scholar 

  27. Wang M L, Han K L, He G Z. Product rotational polarization in the photoinitiated bimolecular reaction A+BC→AB+C on attractive, mixed and repulsive surfaces. J Chem Phys, 1998, 109: 5446–5454

    Article  Google Scholar 

  28. Brouard M, Lambert H M, Rayner S P, et al. Product state resolved stereodynamics of the reaction H(2S)+CO2 → OH(X 2Π3/2; v = 0, N = 5) + CO(1Σ+). Mol Phys, 1996, 89: 403–423

    Google Scholar 

  29. Wang M L, Han K L, He G Z. Product rotational polarization in photo-initiated bimolecular reactions A+BC: Dependence on the character of the potential energy surface for different mass combinations. J Phys Chem A, 1998, 102: 10204–10210

    Article  Google Scholar 

  30. Chen M D, Han K L, Lou N Q. Theoretical study of stereodynamics for the reactions Cl+H2/HD/D2. J Chem Phys, 2003, 118: 4463–4470

    Article  Google Scholar 

  31. Zhang X, Han K L. High-order symplectic integration in quasiclassical trajectory simulation: Case study for O(1D) +H2. Int Quant Chem, 2006, 106: 1815–1819

    Article  Google Scholar 

  32. Han K L, He G Z, Lou N Q. Effect of location of energy barrier on the product alignment of reaction A+BC. J Chem Phys, 1996, 105: 8699–8704

    Article  Google Scholar 

  33. Han K L, He G Z, Lou N Q. The theoretical studies of product alignment of the reactions of Na, F, with CH3I. Chin Chem Lett, 1993, 4: 517–520

    Google Scholar 

  34. Shafer-Ray N E, Orr-Ewing A J, Zare R N. Beyond state-to-state differential cross sections: Determination of product polarization in photoinitiated bimolecular reactions. J Phys Chem, 1995, 99: 7591–7603

    Article  Google Scholar 

  35. Aoiz F J, Banares L, Herrero V J. Recent results from quasiclassical trajectory computations of elementary chemical reactions. J Chem Soc Farady Trans, 1998, 94: 2483–2500

    Article  Google Scholar 

  36. Zhao J, Xu Y, Meng Q T. Isotope effect of the stereodynamics for the reactions F+HO→HF+O and F+DO→DF+O. J Phys B, 2009, 42: 165006

    Article  Google Scholar 

  37. Gómez-Carrasco S, Hernándezb M L, Alvariño J M. Quantum and quasiclassical state-selected O(1D)+HF reaction dynamics and kinetics on a new MRCI ground singlet potential energy surface. Chem Phys Lett, 2007, 435: 188–193

    Article  Google Scholar 

  38. Goncalves C P, Mohallem J R. A new algorithm to handle finite nuclear mass effects in electronic calculations: The ISOTOPE program. J Comp Chem, 2004, 25: 1736–1739

    Article  Google Scholar 

  39. Chen M D, Han K L, Lou N Q. Vector correlation in the H + D2 reaction and its isotopic variants: Isotope effect on stereodynamics. Chem Phys Lett, 2002, 357: 483–490

    Article  Google Scholar 

  40. Han K L, He G Z, Lou N Q. Impulse model of the atom-molecule reaction. Chin J Chem Phys, 1989, 2: 323–333

    Google Scholar 

  41. Li R J, Han K L, Li F E, et al. Rotational alignment of product molecules from the reactions Sr+CH3Br, C2H5Br, n-C3H7Br, i-C3H7Br by means of PLIF. Chem Phys Lett, 1994, 220: 281–285

    Article  Google Scholar 

  42. Lin S Y, Han K L, Zhang J Z H. Accurate quantum-mechanical calculation for O(1D)+DCl reaction. Chem Phys Lett, 2000, 324: 122–126

    Article  Google Scholar 

  43. Li W L, Wang M S, Yang C L, et al. Theoretical study of the stereodynamics of the reactions of D+H2 → H+ HD and H+D2 → D+HD. Chem Phys, 2007, 337: 93–98

    Article  Google Scholar 

  44. Chu T S, Zhang Y, Han K L. The time-dependent quantum wave packet approach to the electronically nonadiabatic process in chemical reactions. Int Rev Phys Chem, 2006, 25: 201–235

    Article  Google Scholar 

  45. Zhang Y, Xie T X, Han K L. Reactivity of the ground and excited spin-orbit states for the reaction of the F(2P3/2, 2P1/2) with D2. J Phys Chem A, 2003, 107: 10893–10896

    Article  Google Scholar 

  46. Chu T S, Han K L. Effect of Coriolis coupling in chemical reaction dynamics. Phys Chem Chem Phys, 2008, 10: 2431–2441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Yin, S., Guo, M., Li, L. et al. Isotope effect of the stereodynamics in the reactions F+HCl→HF+Cl and F+DCl→DF+Cl. Chin. Sci. Bull. 55, 3868–3874 (2010). https://doi.org/10.1007/s11434-010-4201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4201-5

Keywords

Navigation