Skip to main content
Log in

Vast laminated diatom mat deposits from the west low-latitude Pacific Ocean in the last glacial period

  • Articles / Oceanology
  • Published:
Chinese Science Bulletin

Abstract

Diatoms are one of the predominant contributors to global carbon fixation by accounting for over 40% of total oceanic primary production and dominate export production. They play a significant role in marine biogeochemistry cycle. The diatom mat deposits are results of vast diatoms bloom. By analysis of diatom mats in 136°00′−140°00′E, 15°00′−21°00′N, Eastern Philippines Sea, we identified the species of the diatoms as giant Ethmodiscus rex (Wallich) Hendey. AMS 14C dating shows that the sediments rich in diatom mats occurred during 16000−28600 a B.P., which means the bloom mainly occurred during the last glacial period, while there are no diatom mat deposits in other layers. Preliminary analysis indicates that Antarctic Intermediate Water (AAIW) expanded northward and brought silicate-rich water into the area, namely, silicon leakage processes caused the bloom of diatoms. In addition, the increase of iron input is one of the main reasons for the diatom bloom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson D M, Brzezinski M A, Sigmon D E, et al. A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep-Sea Res Part II, 2001, 48: 3973–3995

    Article  Google Scholar 

  2. Sarthou G, Timmermans K R, Blain S, et al. Growth physiology and fate of diatoms in the ocean: a review. J Sea Res, 2005, 53: 25–42

    Article  Google Scholar 

  3. Bopp L, Aumont O, Cadule P, et al. Response of diatoms distribution to global warming and potential implications: A global model study. Geophys Res Lett, 2005, 32: L19606, doi:10.1029/2005GL023653

    Article  Google Scholar 

  4. Archer D, Winguth A, Chicago I, et al. What caused the glacial/interglacial atmospheric pCO2 cycles? Rev Geophys, 2000, 38: 159–189

    Article  Google Scholar 

  5. Goldman J C, Dennis J, McGillicuddy J. Effect of large marine diatoms growing at low light on episodic new production. Limnol Oceanogr, 2003, 48: 1176–1182

    Article  Google Scholar 

  6. Kemp A E S, Pike J, Pearce R B, et al. The “Fall dump” —a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep-Sea Res Part II, 2000, 47: 2129–2154

    Article  Google Scholar 

  7. Kemp A E S, Baldauf J G. Vast neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature, 1993, 362: 141–144

    Article  Google Scholar 

  8. Kemp A E S, Baldauf J G, Pearce R B. Origins and paleo-ceanographic significance of laminated diatom ooze from the eastern equatorial Pacific Ocean. Proc Ocean Drill Prog Sci Res, 1995, 138: 641–645

    Google Scholar 

  9. Grigorov I, Pearce R B, Kemp A E S. Southern Ocean laminated diatom ooze: mat deposits and potential for palaeo-flux studies, ODP leg 177, Site 1093. Deep-Sea Res Part II, 2002, 49: 3391–3407

    Article  Google Scholar 

  10. Dickens G R, Barron J A. A rapidly deposited pennate diatom ooze in Upper Miocene-Lower Pliocene sediment beneath the North Pacific polar front. Mar Micropaleontol, 1997, 31: 177–182

    Article  Google Scholar 

  11. Boden P, Backman J. A laminated sediment sequence from the northern North Atlantic Ocean and its climatic record. Geology, 1996, 24: 507–510

    Article  Google Scholar 

  12. Abrantes F. Assessing the Ethmodiscus ooze problem: new perspective from a study of an eastern equatorial Atlantic core. Deep-Sea Res Part I, 2001, 48: 125–135

    Article  Google Scholar 

  13. Broecker W S, Clark E, Lynch-Stieglitz J, et al. Late glacial diatom accumulation at 9°S in the Indian Ocean. Paleoceanography, 2000, 15: 348–352

    Article  Google Scholar 

  14. De Deckker P, Gingele F X. On the occurrence of the giant diatom Ethmodiscus rex in an 80-ka record from a deep-sea core, southeast of Sumatra, Indonesia: implications for tropical palaeoceanography. Mar Geol, 2002, 183: 31–43

    Article  Google Scholar 

  15. Villareal T A. Abundance of the giant diatom Ethmodiscus in the southwest Atlantic Ocean and central Pacific gyre. Diatom Res, 1993, 8: 171–177

    Google Scholar 

  16. Villareal T A, Joseph L, Brzezinski M A, et al. Biological and chemical characteristics of the giant diatom Ethmodiscus (Bacillariophyceae) in the central North Pacific gyre. J Phycol, 1999, 35: 896–902

    Article  Google Scholar 

  17. Villareal T A, McKay R M L, Al-Rshaidat M M D, et al. Compositional and fluorescence characteristics of the giant diatom Ethmodiscus along a 3000 km transect (28°N) in the central North Pacific gyre. Deep-Sea Res Part I, 2007, 54: 1273–1288

    Article  Google Scholar 

  18. Kemp A E S, Pearce R B, Grigorov I, et al. Production of giant marine diatoms and their export at oceanic frontal zones: Implications for Si and C flux from stratified oceans. Global Biogeochem Cycles, 2006, 20: GB4S04, doi:10.1029/2006GB002698

    Article  Google Scholar 

  19. Xu Z K, Li A C, Jiang F Q, et al. Geochemical character and material source of sediments in the eastern Philippine Sea. Chinese Sci Bull, 2008, 53: 923–931

    Article  Google Scholar 

  20. Brzezinski M, Pride C J, Franck V M, et al. A switch from Si(OH)4 to NO3. depletion in the glacial Southern Ocean. Geophys Res Lett, 2002, 29, doi:10.1029/2001GL014349

  21. Sarmiento J L, Gruber N, Brzezinski M A, et al. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 2004, 427: 56–60

    Article  Google Scholar 

  22. Talley L D. Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Geophys Monogr, 1999, 112: 1–22

    Google Scholar 

  23. Tsuchiya M. Flow path of the Antarctic intermediate water in the western equatorial South Pacific Ocean. Deep-Sea Res Part A, 1991, 38: 273–279

    Google Scholar 

  24. Qu T, Mitsudera H, Yamagata T. A climatology of the circulation and water mass distribution near the Philippine coast. J Phys Oceanogr, 1999, 29: 1488–1505

    Article  Google Scholar 

  25. Lindstrom E, Lukas R, Fine R, et al. The western equatorial Pacific Ocean circulation study. Nature, 1987, 330: 533–537

    Article  Google Scholar 

  26. Koutavas A, Lynch-Stieglitz J, Marchitto T M, et al. El Nino-like pattern in ice age tropical Pacific sea surface temperature. Science, 2002, 297: 226–230

    Article  Google Scholar 

  27. Hutchins D A, Bruland K W. Iron-limited diatom growth and Si: N uptake ratios ina coastal upwelling regime. Nature, 1998, 393: 561–564

    Article  Google Scholar 

  28. Takeda S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 1998, 393: 774–777.

    Article  Google Scholar 

  29. Sun X, Luo Y, Huang F, et al. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon. Mar Geol, 2003, 201: 97–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TieGang Li.

Additional information

Supported by the National Basic Research Program (Grant No. 2007CB815903), National Natural Science Foundation of China (Grant No. 40776031) and Pilot Project of the National Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-221)

About this article

Cite this article

Zhai, B., Li, T., Chang, F. et al. Vast laminated diatom mat deposits from the west low-latitude Pacific Ocean in the last glacial period. Chin. Sci. Bull. 54, 4529–4533 (2009). https://doi.org/10.1007/s11434-009-0447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0447-1

Keywords

Navigation