Skip to main content
Log in

Composition dependence of viscosity for Al(1−x)Mgx(0⩽x⩽0.10) alloys

  • Articles
  • Metal Materials
  • Published:
Chinese Science Bulletin

Abstract

Viscosities of molten Al(1−x)Mgx (0⩽x⩽0.10) alloys have been measured in the temperature range of 973 K-1173 K by a torsional oscillation cup method. The viscosity dependence on temperature for Al(1−x)Mgx (0⩽x⩽0.10) melts obeys Arrhenius equation. The viscosity increases with increasing magnesium concentration in the investigated system. There is an important relationship between viscosity and its glass-forming ability for metallic melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson J R. The structure of liquid metals and alloy. Metall Rev, 1965, 8: 381–386

    Google Scholar 

  2. Iida T. The Physical Properties of Liquid Metals. London: Clarendon, 1993. 147–198

    Google Scholar 

  3. Adam G, Gibbs J H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys, 1965, 43(1):139–146

    Article  Google Scholar 

  4. Goldstein M. Viscous liquids and the glass transition: A potential energy barrier picture. J Chem Phys, 1969, 51(9): 3728–3739

    Article  Google Scholar 

  5. Lacks D J. Arrhenius viscosity in fragile liquids due to non-Newtonian effects. Chem Phys, 2003, 118: 1593–1595

    Article  Google Scholar 

  6. Kim W, Chair T S. A simplified phenomenological theory of viscosity for liquid metals. Bull Korean Chem Soc, 2001, 22(1): 43–45

    Google Scholar 

  7. Zhang B, Bian X F, Si P Ch, et al. Crystallization behavior of novel amorphous Al85Mg10Ce5 alloy. Phys Lett A, 2004, 327: 38–43

    Article  Google Scholar 

  8. Wang S H. An investigation of glass forming ability and crystallization process for Al-based amorphous alloys. Dissertation for the Master Degree. Jinan: Shandong University, 2004. 58–60

    Google Scholar 

  9. Anderson P W. Through the glass lightly. Science, 1995, 267: 1615–1616

    Article  Google Scholar 

  10. Sokolov A P. Why the glass transition is still interesting. Science, 1996, 273: 1675–1676

    Article  Google Scholar 

  11. Dzugutov M, Sasigh B, Elliott S R. Medium-range order in a simple monatomic liquid. J Non-Cryst Solids, 1998, 232–234: 20–24

    Article  Google Scholar 

  12. Elliott S R. Medium-range structural order in covalent amorphous solids. Nature, 1991, 354(12): 445–447

    Article  Google Scholar 

  13. Elliott S R. The origin of the first sharp diffraction peak in the structure factor of covalent glasses and liquids. J Phy Condens Matter, 1992, 4: 7661–7678

    Article  Google Scholar 

  14. Cervinda L. Interpretation of medium-angle X-ray (neutron) scattering in amorphous solids by Fraunhofer diffraction of 2D-models. J Non-Cryst Solids, 1985, 75: 69–74

    Article  Google Scholar 

  15. Cervinda L. Medium-range ordering in non-crystalline solids. J Non-Cryst Solids, 1987, 90: 371–381

    Article  Google Scholar 

  16. Bletry J. Sphere and distance models for binary disordered systems. Phil Mag, 1990, B62: 469–508

    Google Scholar 

  17. Dzugutov M. Hopping diffusion as a mechanism of relaxation stretching in a stable simple monatomic liquid. Europlys Lett, 1994, 26: 533–538

    Google Scholar 

  18. Angell C A. Spectroscopy simulation and scattering, and the medium range order problem in glass. J Non-Cryst Solids, 1985, 73(1–3): 1–17

    Article  Google Scholar 

  19. Scopigno T, Ruocco G, Sette F, et al. Is the fragility of a liquid embedded in the properties of its glass? Science, 2003, 302: 849–852

    Article  Google Scholar 

  20. Kisun’ko V Z, Beloborodov A Z, Bychkov, Y B. Viscosity of liquid secondary aluminum casting alloys. Tsvetn Met, 1980, 8: 86–88

    Google Scholar 

  21. Emadi D, Gruzleski J E, Toguri J M. The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metall Trans B, 1993, 24: 1055–1063

    Google Scholar 

  22. Chhabra R P, Sheth D K. Viscosity of molten metals and its temperature dependence. Z Metallkd, 1990, 81(4): 264–271

    Google Scholar 

  23. Bian X F, Liu X F, Ma J J. Heredity in Cast Metals (in Chinese). Jinan: Shandong Science and Technology Press, 1998. 6–8

    Google Scholar 

  24. Liu X F, Bian X F. The formation of the block like silicon phase in Al-Si alloy. JOM, 1997, 11: 40–41

    Google Scholar 

  25. Li H, Bian X F, Wang G H. Molecular dynamics computation of the liquid structure of Fe50Al50 alloy. Mater Sci Eng A, 2001, 298: 245–250

    Article  Google Scholar 

  26. Li H, Bian X F, Wang G H. Molecular dynamics study of the local order and defects in quenched states. Phys Rev B, 2003, 67: 094202–094208

    Article  Google Scholar 

  27. Woo S S, Kim Y R, Shin D H. Effects of Mg concentration on the quasisuperplasticity of coarse-grained Al-Mg alloys. Scripta Materiallia, 1997, 37(9): 1351–1358

    Article  Google Scholar 

  28. Eric M T, Gregory A H, Nieh T G, et al. Warm-temperature tensile ductility in Al-Mg alloys. Metall Trans, 1998, 29A: 1084–1091

    Google Scholar 

  29. Massalski T B, Okamoto H, Subramanian P R, et al. Binary Alloy Phase Diagrams. 2nd ed., Ohio: ASM International, Materials Park, 1990. 9

    Google Scholar 

  30. Bian X F, Wang W M, Li H, et al. The Structure of Metal Melts (in Chinese). Shanghai: Shanghai Jiao Tong University Press, 2003. 54–55

    Google Scholar 

  31. Wang L, Bian X F, Liu J T. Discontinuous structure phase transition in the liquid metals & alloys (1). Phys Lett A, 2004, 326: 429–435

    Article  Google Scholar 

  32. Predel B. Thermodynamic investigations on the formation and decomposition of metallic glasses. Physica B+C, 1981, 103: 113–122

    Article  Google Scholar 

  33. Bian X F, Sun B A, Hu L N, et al. Fragility of superheated melts and glass-forming ability in Al-based alloys. Phys Lett A, 2005, 335: 61–67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang YuQing.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 50231040 and 50171037)

About this article

Cite this article

Wang, Y., Wu, Y. & Bian, X. Composition dependence of viscosity for Al(1−x)Mgx(0⩽x⩽0.10) alloys. CHINESE SCI BULL 52, 1441–1445 (2007). https://doi.org/10.1007/s11434-007-0214-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0214-0

Keywords

Navigation