Skip to main content
Log in

Toposelective synthesis under thermodynamic control and bioactivities of topoisomers based on diethoxycarbonyl glycoluril derivatives

  • Brief Communication
  • Published:
Chinese Science Bulletin

Abstract

Six topoisomers consisting of diethoxycarbonyl glycoluril have been successfully synthesized in one-pot by using a “figure-of-seven” building block through anti-connectivity and syn-connectivity reactions, respectively. The structures of all six topoisomers were first determined by X-ray crystallography. The finding that (±) CT isomers are the dominant products under thermodynamic control can be explained by the calculated relative energies of the six topoisomers. That the (±) CT isomers have the lowest energy is most likely due to the additional intramolecular electrostatic interactions between-NO2 and-OMe groups. The biological activities of the topoisomers were primitively investigated and the results of bioassay showed that the six topoisomers possessed obvious difference of herbicidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Murakami H, Kawabuchi A, Kotoo K, et al. A light-driven molecular shuttle based on a rotaxane. J Am Chem Soc, 1997, 119(32): 7605–7606

    Article  Google Scholar 

  2. Bottari G, Leigh D A, Pérez E M. Chiroptical switching in a bistable molecular shuttle. J Am Chem Soc, 2003, 125(44): 13360–13361

    Article  Google Scholar 

  3. Qu D H, Wang Q C, Ren J, et al. A light-driven rotaxane molecular shuttle with dual fluorescence addresses. Org Lett, 2004, 6(13): 2085–2088

    Article  Google Scholar 

  4. Constable E C, Kulke T, Neuburger M, et al. Diastereoselective formation of P and M dicopper (I) double helicates with chiral 2, 2′: 6′, 2″-terpyridines. Chem. Commun, 1997, 489–490

  5. Corey E J. Catalytic enantioselective Diels-Alder reactions: Methods, mechanistic fundamentals, pathways, and applications. Angew Chem Int Ed, 2002, 41(10): 1650–1667

    Article  Google Scholar 

  6. Szpilman A M, Korshin E E, Rozenberg H, et al. Total syntheses of Yingzhaosu a and of its C(14)-epimer including the first evaluation of their antimalarial and cytotoxic activities. J Org Chem, 2005, 70(9): 3618–3632

    Article  Google Scholar 

  7. Frisch H L, Wasserman E. Chemical topology. J Am Chem Soc, 1961, 83(18): 3789–3795

    Article  Google Scholar 

  8. Walba D M. Topological stereochemistry. Tetrahedron, 1985, 41(16): 3161–3212

    Article  Google Scholar 

  9. Smith J V. Topochemistry of zeolites and related materials, 1. Topology and geometry. Chem Rev, 1988, 88(1): 149–182

    Article  Google Scholar 

  10. Chambron J C, Mitchell D K, Sauvage J P. Synthesis, characterization, and a proton NMR study of topologically chiral copper(I) [2]-catenates and achiral analogues. J Am Chem Soc, 1992, 114(12): 4625–4631

    Article  Google Scholar 

  11. Dodziuk H, Nowiński K S. Topological isomerism: should rotaxanes, endohedral fullerene complexes and in-out isomers of hydrogenated fullerenes be considered as such? Tetrahedron, 1998, 54: 2917–2930

    Article  Google Scholar 

  12. McArdle C P, Van S, Jennings M C, et al. Gold(I) macrocycles and topologically chiral [2]catenanes. J Am Chem Soc, 2002, 124(15): 3959–3965

    Article  Google Scholar 

  13. Thordarson P, Bijsterveld E J A, Rowan A E, et al. Epoxidation of polybutadiene by a topologically linked catalyst. Nature, 2003, 424: 915–918

    Article  Google Scholar 

  14. Lukin O, Godt A, Vögtle F. Residual Topological isomerism of intertwined molecules. Chem Eur J, 2004, 10: 1878–1883

    Article  Google Scholar 

  15. Shoji O, Okada S, Satake A, et al. Coordination assembled rings of ferrocene-bridged trisporphyrin with flexible hinge-like motion: selective dimer ring formation, its transformation to larger rings, and vice versa. J Am Chem Soc, 2005, 127(7): 2201–2210

    Article  Google Scholar 

  16. Fuller A M L, Leigh D A, Lusby P J, et al. Selecting topology and connectivity through metal-directed macrocyclization reactions: a square planar palladium [2]catenate and two noninterlocked isomers. J Am Chem Soc, 2005, 127(36): 12612–12619

    Article  Google Scholar 

  17. Mohry A, Vögtle F, Nieger M, et al. Regioselective template synthesis, X-ray structure, and chiroptical properties of a topologically chiral sulfonamide catenane. Chirality, 2000, 12: 76–83

    Article  Google Scholar 

  18. Choi D S, Chong Y S, Whitehead D, et al. Molecules with shape memeroy based on restricted rotation. Org Lett, 2001, 3(23): 3757–3760

    Article  Google Scholar 

  19. Perret-Aebi L E, Zelewsky A, Buchecker C D, et al. Stereoslective synthesis of a topologically chiral molecules: the trefoit knot. Angew Chem Int Ed, 2004, 43(34): 4482–4485

    Article  Google Scholar 

  20. Lukin O, Vögtle F. Knotting and threading of molecules: chemistry and chirality of molecular knots and their assemblies. Angew Chem Int Ed, 2005, 44(10): 1456–1477

    Article  Google Scholar 

  21. Li H, Eddaoudi M, Yaghi O M. An open-framework germanate with polycubane-like topology. Angew Chem Int Ed, 1999, 38(5): 653–655

    Article  Google Scholar 

  22. Abrahams B F, Batten S R, Grannas M J, et al. Ni(tpt)(NO3)2-A three-dimensional network with the exceptional (12,3) topology: A self-entangled single net. Angew Chem Int Ed, 1999, 38(10): 1475–1477

    Article  Google Scholar 

  23. McArdle C P, Vittal J J, Puddephatt R J. Molecular topology: Easy self-assembly of an organometallic doubly braided[2] catenane. Angew Chem Int Ed, 2000, 39(21): 3819–3822

    Article  Google Scholar 

  24. Kuramochi Y, Satake A, Kobuke Y. Light-harvesting macroring accommodating a tetrapodal ligand based on complementary and cooperative coordinations. J Am Chem Soc, 2004, 126(28): 8668–8669

    Article  Google Scholar 

  25. Eickmeier C, Holmes D, Junga H, et al. A novel phenylene topology: total syntheses of zigzag[4]-and [5] phenylene. Angew Chem Int Ed, 1999, 38(6): 800–804

    Article  Google Scholar 

  26. Schenk M, Smit B, Vlugt T J H, et al. Shape selectivity in hydrocarbon conversion. Angew Chem Int Ed, 2001, 40(4): 736–739

    Article  Google Scholar 

  27. El-Sayed M A. Small is different shape-, size, and composition-dependent properties of some colloidal Semiconductor nanocrystals. Acc Chem Res, 2004, 37(5): 326–333

    Article  Google Scholar 

  28. Liu J, Boarman K J. Regiospecific topochemical reactions controlled by trifluoromethyl directing groups. Chem Commun, 2005, 340–341

  29. Weinelt F, Schneider H J. Host-guest chemistry. 27. Mechanisms of macrocycle genesis: the condensation of resorcinol with aldehydes. J Org Chem, 1991, 56(19): 5527–5535

    Article  Google Scholar 

  30. Witt D, Lagona J, Damkaci F, et al. Diastereoselective formation of methylene-bridged glycoluril dimers. Org Lett, 2000, 2(6): 755–758

    Article  Google Scholar 

  31. Wang Y Q, Luo W H, Xu R J, et al. Biological activity of brassinosteroids and relationship of structure to plant growth promoting effects. Chin Sci Bull, 1994, 39(18): 1573–1577

    Google Scholar 

  32. Wang J P, Zhang X Y, Chen Q H. Application of modified amino acid as a chiral building block in asymmetric synthesis. Chin Sci Bull, 2001, 46(23): 1952–1956

    Article  Google Scholar 

  33. Buchwald H D, Durham L, Fischer H G, et al. Identity of tarichatoxin and tetrodotoxin. Science, 1964, 143: 474–475

    Google Scholar 

  34. Mosher H S, Fuhrman H D, Buchwald H D, et al. Tarichatoxintetrodotoxin: a potent neurotoxin. Science, 1964, 144: 1100–1100

    Google Scholar 

  35. Piccolo O, Spreafico F, Visentin G, et al. Zinc salt catalyzed rearrangement of acetals of optically active aryl 1-chloroethyl ketones: synthesis of optically active 2-arylpropionic acids and esters. J Org Chem, 1987, 52(1): 10–14

    Article  Google Scholar 

  36. Hamilton J A, Chen L Y. Crystal structure of an inclusion complex of beta-cyclodextrin with racemic fenoprofen: direct evidence for chiral recognition. J Am Chem Soc, 1988, 110(17): 5833–5841

    Article  Google Scholar 

  37. Wang Y S, Tai K T, Yen J H. Separation, bioactivity, and dissipation of enantiomers of the organophosphorus insecticide fenamiphos. Ecotoxicol Environ Saf, 2004, 57: 346–353

    Article  Google Scholar 

  38. Wu A X, Chakraborty A, Witt D, et al. Methylene-bridged glycoluril dimers: synthetic methods. J Org Chem, 2002, 67(16): 5817–5830

    Article  Google Scholar 

  39. Zhou B H, Yin G D, Liu X P, et al. Studies on topological isomers (I) spectrum properties and structure identification of C-shaped and S-shaped topological isomers. Chem J Chinese U (in Chinese), 2006, 27(1): 58–61

    Google Scholar 

  40. Wei F Q, Wu A X. Diethyl cis-1, 2, 3, 4, 510-hexahydro-7, 8-dimethyl-1,4-dioxo-2,3,4a,10a,-tetraazabenzo[g]cyclopent[cd]azulene-2a, 10b-dicarboxylate chloroform disolvate. Acta Cryst, 2005, E61: o1453–o1455

    Google Scholar 

  41. Chen Y F, Zhou B H, Yin G D, et al. Diethyl cis-1,2,3, 4,5,10-hexahydro-6-iodo-1,4-dioxo-2,3,4a,10a-tetraazabenzo[g]cyclopent-[cd]azulene-2a,10b-dicarboxylate. Acta Cryst, 2005, E61: o2470–o2472

    Google Scholar 

  42. Sijbesma R P, Wijmenga S S, Nolte R J M. A molecular clip that binds aromatic guests by an induced-fit mechanism. J Am Chem Soc, 1992, 114(25): 9807–9813

    Article  Google Scholar 

  43. Sijbesma R P, Kentgens A P M, Lutz E T G, et al. Binding features of molecular clips derived from diphenylglycoluril. J Am Chem Soc, 1993, 115(20): 8999–9005

    Article  Google Scholar 

  44. van Nunen J L M, Nolte R J M. Induction of liquid-crystallinity in molecular clips by binding of different guest molecules. J Chem Soc Perkin Trans 2, 1997, 1473–1478

    Google Scholar 

  45. Reek J N H, Elemans J A A W, Nolte R J M. Synthesis, conformational analysis, and binding properties of molecular clips with two different side walls. J Org Chem, 1997, 62(7): 2234–2243

    Article  Google Scholar 

  46. Chakraborty A, Wu A X, Witt D, et al. Diastereoselective formation of glycoluril dimers: isomerization mechanism and implications for cucurbit[n]uril synthesis. J Am Chem Soc, 2002, 124(28): 8297–8306

    Article  Google Scholar 

  47. Dewar M J S, Zoebisch E G, Healy E F, et al. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J Am Chem Soc, 1985, 107(13): 3902–3909

    Article  Google Scholar 

  48. Fabian W M F. Tautomeric equilibria of heterocyclic molecules: A test of the semiempirical AM1 and MNDO-PM3 methods. J Comput Chem, 1991, 12(1): 17–35

    Article  Google Scholar 

  49. Wilamowski J, Kulig E, Sepiol J J. Synthesis and in vitro antifungal activity of 1-amino-3,4-dialkylnaphthalene-2-carboni-triles and their analogues. Pest Manag Sci, 2001, 57(7): 625–632

    Article  Google Scholar 

  50. Abdelgaleil S A M, Hashinaga F, Nakatani M. Antifungal activity of limonoids from Khaya ivorensis. Pest Manag Sci, 2005, 61(2): 186–190

    Article  Google Scholar 

  51. Wang B L, Duggleby R G, Li Z M, et al. Synthesis, crystal structure and herbicidal activity of mimics of intermediates of the KARI reaction. Pest Manag Sci, 2005, 61(4): 407–412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu Anxin or Wan Jian.

About this article

Cite this article

Zhou, B., Yin, G., Wang, Z. et al. Toposelective synthesis under thermodynamic control and bioactivities of topoisomers based on diethoxycarbonyl glycoluril derivatives. CHINESE SCI BULL 51, 2164–2168 (2006). https://doi.org/10.1007/s11434-006-2089-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-2089-x

Keywords

Navigation