Skip to main content
Log in

Autonomous navigation method and technology implementation of high-precision solar spectral velocity measurement

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The velocity information of spacecraft can be directly obtained by the autonomous navigation method based on astronomical spectral velocity measurement. It provides complete direct velocity measurement information for the traditional navigation methods represented by astronomical angle measurement and astronomical ranging, which is of great significance for spacecraft high precision autonomous navigation. This paper comprehensively introduces the principle and navigation method of astronomical spectral velocity measurement, as well as the technical realization of the solar atomic frequency discriminator for autonomous navigation (SAFDAN) based on atomic frequency discrimination velocity measurement. The new SAFDAN is the first instrument to measure the Doppler velocity of spacecraft relative to the Sun. Carried by the CHASE mission, the in-orbit experiment of the SAFDAN is realized, and the in-orbit velocity measurement accuracy reaches 1.93 m/s, which effectively verifies the feasibility of the astronomical spectral velocity measurement method and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Y. Wang, and X. Y. Huang, Aerospace Control Appl. 35, 6 (2009).

    Google Scholar 

  2. A. G. Wang, Acta Electron. Sin. 35, 2347 (2007).

    Google Scholar 

  3. S. Y. Zhu, X. H. Chang, H. T. Cui, and P. Y. Cui, Chin. J. Space Sci. 31, 534 (2011).

    ADS  Google Scholar 

  4. J. R. Yim, J. L. Crassidis, and J. L. Junkins, in AIAA/AAS Astrodynamics Specialist Conference (AIAA Paper, Reston, 2000), p. 53.

  5. W. Zhang, X. Chen, W. You, and B. D. Fang. Aerospace Shanghai 2, 32 (2013).

    Google Scholar 

  6. W. Wang, B. D. Fang, W. Zhang, and C. Welch, in 64th International Astronautical Congress (Beijing, 2013).

  7. X. Chen, W. Zhang, and W. Wang, in 64th International Astronautical Congress (Beijing, 2013).

  8. W. Zhang, Celestial Navigation Theory and Method for Deep Space Exploration (Science Press, Beijing, 2017).

    Google Scholar 

  9. X. Chen, W. Zhang, and Y. M. Peng, Spacecraft Recov. Remot. Sens. 33, 17 (2012).

    Google Scholar 

  10. W. You, W. Zhang, and G. F. Ma, J. Chin. Inertial Technol. 25, 338 (2017).

    Google Scholar 

  11. W. Zhang, Q. L. Huang, and X. Chen, Sci. Sin.-Phys. Mech. Astron. 49, 084510 (2019).

    Article  Google Scholar 

  12. Q. L. Huang, X. Chen, and W. You, in 6th CSA/IAA Conference on Advanced Space Technology (Shanghai, 2015).

  13. X. Chen, Z. W. Sun, Q. L. Huang, M. Liu, and W. Zhang, in 37th Chinese Control Conference (Wuhan, 2018).

  14. J. Harlander, R. J. Reynolds, and F. L. Roesler, Astrophys. J. 396, 730 (1992).

    Article  ADS  Google Scholar 

  15. C. R. Englert, D. D. Babcock, and J. M. Harlander, Appl. Opt. 46, 7297 (2007).

    Article  ADS  Google Scholar 

  16. W. Wang, G. F. Ma, W. Zhang, and Q. L. Huang, Aerospace Shanghai 37, 10 (2020).

    Google Scholar 

  17. G. F. Ma, W. Wang, W. Zhang, Q. L. Huang, Y. M. Peng, and X. Zhang, J. Astron. 41, 1166 (2020).

    Google Scholar 

  18. E. G. Lightsey, A. Mogensen, P. D. Burkhart, T. A. Ely, and C. Duncan, J. Spacecraft Rockets. 45, 519 (2008).

    Article  ADS  Google Scholar 

  19. Y. Yang, The Atomic Frequency Discriminator and Its Application in Solar Observation, Dissertation for the Doctoral Degree (University of Chinese Academy of Science, Wuhan, 2013).

    Google Scholar 

  20. R. Erdélyi, M. B. Korsós, X. Huang, Y. Yang, D. Pizzey, S. A. Wrathmall, I. G. Hughes, M. J. Dyer, V. S. Dhillon, B. Belucz, R. Brajša, P. Chatterjee, X. Cheng, Y. Deng, S. V. Domínguez, R. Joya, P. Gömöry, N. G. Gyenge, A. Hanslmeier, A. Kucera, D. Kuridze, F. Li, Z. Liu, L. Xu, M. Mathioudakis, S. Matthews, J. R. T. McAteer, A. A. Pevtsov, W. Pötzi, P. Romano, J. Shen, J. Temesváry, A. G. Tlatov, C. Triana, D. Utz, A. M. Veronig, Y. Wang, Y. Yan, T. Zaqarashvili, and F. Zuccarello, J. Space Weather Space Clim. 12, 2 (2022).

    Article  ADS  Google Scholar 

  21. F. Q. Li, X. W. Cheng, X. Lin, Y. Yang, K. J. Wu, Y. J. Liu, S. S. Gong, and S. L. Song, Opt. Laser Tech. 44, 1982 (2012).

    Article  ADS  Google Scholar 

  22. Y. Yang, X. W. Chen, F. Q. Li, H. Xiong, L. Xin, and G. Shunsheng, Opt. Lett. 36, 1302 (2011).

    Article  ADS  Google Scholar 

  23. X. W. Cheng, Y. Yang, Z. L. Wang, F. Q. Li, G. T. Yang, Z. Y. Zhao, W. Gong, J. H. Wang, X. Hu, X. Lin, X. C. Wu, S. L. Song, and S. S. Gong, Sci. China Earth Sci. 59, 418 (2016).

    Article  ADS  Google Scholar 

  24. Y. J. Li, X. Lin, S. S. Gong, J. Xiong, Y. Xia, F. Q. Li, J. C. Gong, X. W. Cheng, X. K. Dou, C. H. Rao, and Y. Yang, Sci. Sin.-Phys. Mech. Astron. 46, 069602 (2016).

    Article  Google Scholar 

  25. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, Opt. Lett. 18, 1019 (1993).

    Article  ADS  Google Scholar 

  26. C. Li, C. Fang, Z. Li, M. D. Ding, P. F. Chen, Y. Qiu, W. You, Y. Yuan, M. J. An, H. J. Tao, X. S. Li, Z. Chen, Q. Liu, G. Mei, L. Yang, W. Zhang, W. Q. Cheng, J. X. Chen, C. Y. Chen, Q. Gu, Q. L. Huang, M. X. Liu, C. S. Han, H. W. Xin, C. Z. Chen, Y. W. Ni, W. B. Wang, S. H. Rao, H. T. Li, X. Lu, W. Wang, J. Lin, Y. X. Jiang, L. J. Meng, and J. Zhao, Sci. China-Phys. Mech. Astron. 65, 289602 (2022).

    Article  ADS  Google Scholar 

  27. Y. Qiu, S. H. Rao, C. Li, C. Fang, M. D. Ding, Z. Li, Y. W. Ni, W. B. Wang, J. Hong, Q. Hao, Y. Dai, P. F. Chen, X. S. Wan, Z. Xu, W. You, Y. Yuan, H. J. Tao, X. S. Li, Y. K. He, and Q. Liu, Sci. China-Phys. Mech. Astron. 65, 289603 (2022).

    Article  ADS  Google Scholar 

  28. Q. Liu, H. Tao, C. Chen, C. Han, Z. Chen, G. Mei, L. Yang, Q. Hu, H. Xin, X. Li, H. Guan, D. Xue, M. Zhu, C. Hu, Q. Ha, Y. He, C. Fang, C. Li, and Z. Li, Sci. China-Phys. Mech. Astron. 65, 289605 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Additional information

The data used in this paper come from the CHASE mission project supported by China National Space Administration (CNSA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yang, Y., You, W. et al. Autonomous navigation method and technology implementation of high-precision solar spectral velocity measurement. Sci. China Phys. Mech. Astron. 65, 289606 (2022). https://doi.org/10.1007/s11433-022-1922-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1922-3

Navigation