Skip to main content
Log in

Distinct superconducting behaviors of pressurized WB2 and ReB2 with different local B layers

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The recent discovery of superconductivity up to 32 K in the pressurized MoB2 reignites the interest in exploring high-Tc superconductors in transition-metal diborides. Inspired by that work, we turn our attention to the 5d transition-metal diborides. Here we systematically investigate the responses of both structural and physical properties of WB2 and ReB2 to external pressure, which possess different types of boron layers. Similar to MoB2, the pressure-induced superconductivity was also observed in WB2 above 60 GPa with a maximum Tc of 15 K at 100 GPa, while no superconductivity was detected in ReB2 in this pressure range. Interestingly, the structures at ambient pressure for both WB2 and ReB2 persist to high pressure without structural phase transitions. Theoretical calculations suggest that the ratio of flat boron layers in this class of transition-metal diborides may be crucial for the appearance of high Tc. The combined theoretical and experimental results highlight the effect of the geometry of boron layers on superconductivity and shed light on the exploration of novel high-Tc superconductors in borides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Bednorz, and K. A. Müller, Z. Phys. B-Cond. Matter 64, 189 (1986).

    Article  Google Scholar 

  2. W. Wang, J. Luo, C. G. Wang, J. Yang, Y. Kodama, R. Zhou, and G. Q. Zheng, Sci. China-Phys. Mech. Astron. 64, 237413 (2021), arXiv: 2008.12012.

    Article  ADS  Google Scholar 

  3. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  4. X. Yu, Z. Wei, Z. Zhao, T. Xie, C. Liu, G. He, Q. Chen, L. Shan, H. Luo, Q. Huan, J. Yuan, and K. Jin, Sci. China-Phys. Mech. Astron. 64, 127411 (2021).

    Article  ADS  Google Scholar 

  5. T. Wang, J. N. Chu, J. X. Feng, L. L. Wang, X. G. Xu, W. Li, H. H. Wen, X. S. Liu, and G. Mu, Sci. China-Phys. Mech. Astron. 63, 297412 (2020), arXiv: 1903.09447.

    Article  ADS  Google Scholar 

  6. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, Nature 569, 528 (2019), arXiv: 1812.01561.

    Article  ADS  Google Scholar 

  7. M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Phys. Rev. Lett. 122, 027001 (2019).

    Article  ADS  Google Scholar 

  8. F. Hong, L. Yang, P. Shan, P. Yang, Z. Liu, J. Sun, Y. Yin, X. Yu, J. Cheng, and Z. Zhao, Chin. Phys. Lett. 37, 107401 (2020).

    Article  ADS  Google Scholar 

  9. D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Y. Fominski, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. A. Troyan, and A. R. Oganov, Mater. Today 33, 36 (2020).

    Article  Google Scholar 

  10. D. V. Semenok, I. A. Troyan, A. G. Ivanova, A. G. Kvashnin, I. A. Kruglov, M. Hanfland, A. V. Sadakov, O. A. Sobolevskiy, K. S. Pervakov, I. S. Lyubutin, K. V. Glazyrin, N. Giordano, D. N. Karimov, A. L. Vasiliev, R. Akashi, V. M. Pudalov, and A. R. Oganov, Mater. Today 48, 18 (2021).

    Article  Google Scholar 

  11. X. Li, X. Huang, D. Duan, C. J. Pickard, D. Zhou, H. Xie, Q. Zhuang, Y. Huang, Q. Zhou, B. Liu, and T. Cui, Nat. Commun. 10, 3461 (2019).

    Article  ADS  Google Scholar 

  12. L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, X. Yu, Y. Zhao, H. Wang, G. Liu, and Y. Ma, arXiv: 2103.16282.

  13. J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nat. Mater. 7, 953 (2008), arXiv: 0806.2528.

    Article  ADS  Google Scholar 

  14. Q. Liu, X. Yu, X. Wang, Z. Deng, Y. Lv, J. Zhu, S. Zhang, H. Liu, W. Yang, L. Wang, H. Mao, G. Shen, Z. Y. Lu, Y. Ren, Z. Chen, Z. Lin, Y. Zhao, and C. Jin, J. Am. Chem. Soc. 133, 7892 (2011).

    Article  Google Scholar 

  15. Y. Mizuguchi, Y. Hara, K. Deguchi, S. Tsuda, T. Yamaguchi, K. Takeda, H. Kotegawa, H. Tou, and Y. Takano, Supercond. Sci. Technol. 23, 054013 (2010), arXiv: 1001.1801.

    Article  ADS  Google Scholar 

  16. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).

    Article  ADS  Google Scholar 

  17. J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, Phys. Rev. Lett. 86, 4656 (2001), arXiv: cond-mat/0101446.

    Article  ADS  Google Scholar 

  18. K. P. Bohnen, R. Heid, and B. Renker, Phys. Rev. Lett. 86, 5771 (2001), arXiv: cond-mat/0103319.

    Article  ADS  Google Scholar 

  19. T. Yildirim, O. Gülseren, J. W. Lynn, C. M. Brown, T. J. Udovic, Q. Huang, N. Rogado, K. A. Regan, M. A. Hayward, J. S. Slusky, T. He, M. K. Haas, P. Khalifah, K. Inumaru, and R. J. Cava, Phys. Rev. Lett. 87, 037001 (2001), arXiv: cond-mat/0103469.

    Article  ADS  Google Scholar 

  20. J. M. An, and W. E. Pickett, Phys. Rev. Lett. 86, 4366 (2001), arXiv: cond-mat/0102391.

    Article  ADS  Google Scholar 

  21. C. Pei, J. Zhang, Q. Wang, Y. Zhao, L. Gao, C. Gong, S. Tian, R. Luo, Z.-Y. Lu, H. Lei, K. Liu, and Y. Qi, arXiv: 2105.13250.

  22. Y. Quan, K. W. Lee, and W. E. Pickett, Phys. Rev. B 104, 224504 (2021), arXiv: 2109.01724.

    Article  ADS  Google Scholar 

  23. B. Aronsson, T. Lundstroem, and I. Engstroem, Some Aspects of the Crystal Chemistry of Borides, Boro-Carbides and Silicides of the Transition Metals Anisotropy in Single-Crystal Refractory Compounds, edited by F. W. Vahldiek, and S. A. Mersol (Springer, New York, NY, 1968), pp. 3–22.

    Chapter  Google Scholar 

  24. B. Aronsson, E. Stenberg, J. Åselius, S. Refn, and G. Westin, Acta Chem. Scand. 14, 733 (1960).

    Article  Google Scholar 

  25. C. Pei, P. Yang, C. Gong, Q. Wang, Y. Zhao, L. Gao, K. Chen, Q. Yin, S. Tian, C. Li, W. Cao, H. Lei, J. Cheng, and Y. Qi, arXiv: 2109.15213.

  26. C. Pei, W. Shi, Y. Zhao, L. Gao, J. Gao, Y. Li, H. Zhu, Q. Zhang, N. Yu, C. Li, W. Cao, S. A. Medvedev, C. Felser, B. Yan, Z. Liu, Y. Chen, Z. Wang, and Y. Qi, Mater. Today Phys. 21, 100509 (2021).

    Article  Google Scholar 

  27. C. Pei, S. Jin, P. Huang, A. Vymazalova, L. Gao, Y. Zhao, W. Cao, C. Li, P. Nemes-Incze, Y. Chen, H. Liu, G. Li, and Y. Qi, npj Quantum Mater. 6, 98 (2021).

    Article  ADS  Google Scholar 

  28. C. Pei, T. Ying, Q. Zhang, X. Wu, T. Yu, Y. Zhao, L. Gao, C. Li, W. Cao, Q. Zhang, A. P. Schnyder, L. Gu, X. Chen, H. Hosono, and Y. Qi, J. Am. Chem. Soc. 144, 6208 (2022).

    Article  Google Scholar 

  29. Q. Wang, P. Kong, W. Shi, C. Pei, C. Wen, L. Gao, Y. Zhao, Q. Yin, Y. Wu, G. Li, H. Lei, J. Li, Y. Chen, S. Yan, and Y. Qi, Adv. Mater. 33, 2102813 (2021).

    Article  Google Scholar 

  30. H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986).

    Article  ADS  Google Scholar 

  31. A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann, High Pressure Res. 14, 235 (1996).

    Article  ADS  Google Scholar 

  32. A. C. Larson, and R. B. V. Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86 (2004).

  33. B. H. Toby, J. Appl. Crystallogr. 34, 210 (2001).

    Article  Google Scholar 

  34. P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  Google Scholar 

  35. W. Kohn, and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  Google Scholar 

  36. S. Baroni, S. de Gironcoli, A. dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001), arXiv: cond-mat/0012092.

    Article  ADS  Google Scholar 

  37. F. Giustino, Rev. Mod. Phys. 89, 015003 (2017), arXiv: 1603.06965.

    Article  ADS  MathSciNet  Google Scholar 

  38. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.-Condens. Matter 21, 395502 (2009), arXiv: 0906.2569.

    Article  Google Scholar 

  39. N. Troullier, and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  40. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  41. J. Noffsinger, F. Giustino, B. D. Malone, C. H. Park, S. G. Louie, and M. L. Cohen, Comput. Phys. Commun. 181, 2140 (2010), arXiv: 1005.4418.

    Article  ADS  Google Scholar 

  42. A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309 (2014).

    Article  ADS  Google Scholar 

  43. G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960).

    Google Scholar 

  44. P. B. Allen, Phys. Rev. B 6, 2577 (1972).

    Article  ADS  Google Scholar 

  45. P. B. Allen, and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

    Article  ADS  Google Scholar 

  46. C. F. Richardson, and N. W. Ashcroft, Phys. Rev. Lett. 78, 118 (1997).

    Article  ADS  Google Scholar 

  47. K. H. Lee, K. J. Chang, and M. L. Cohen, Phys. Rev. B 52, 1425 (1995).

    Article  ADS  Google Scholar 

  48. J. Lim, A. C. Hire, Y. Quan, J. S. Kim, S. R. Xie, R. S. Kumar, D. Popov, C. Park, R. J. Hemley, J. J. Hamlin, R. G. Hennig, P. J. Hirschfeld, and G. R. Stewart, arXiv: 2109.11521.

  49. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  50. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant Nos. 2018YFA0704300, 2018YFE0202600, and 2017YFA0302903), the National Natural Science Foundation of China (Grant Nos. U1932217, 11974246, 12004252, 12174443, and 11774424), the Natural Science Foundation of Shanghai (Grant No. 19ZR1477300), the Science and Technology Commission of Shanghai Municipality (Grant No. 19JC1413900), the Shanghai Science and Technology Plan (Grant No. 21DZ2260400), the Beijing Natural Science Foundation (Grant No. Z200005), and the Fundamental Research Funds for the Central Universities and Research Funds of Renmin University of China (RUC) (Grant Nos. 18XNLG14, 19XNLG13, 19XNLG17, and 22XNKJ40). The authors thank the support from Analytical Instrumentation Center (Grant No. SPSTAIC10112914), SPST, ShanghaiTech University. The authors thank the staffs from BL15U1 at Shanghai Synchrotron Radiation Facility for assistance during data collection. Computational resources were provided by the Physical Laboratory of High Performance Computing at Renmin University of China and Beijing Super Cloud Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hechang Lei, Kai Liu or Yanpeng Qi.

Additional information

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, C., Zhang, J., Gong, C. et al. Distinct superconducting behaviors of pressurized WB2 and ReB2 with different local B layers. Sci. China Phys. Mech. Astron. 65, 287412 (2022). https://doi.org/10.1007/s11433-022-1911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1911-x

PACS number(s)

Navigation