Skip to main content
Log in

Topology change and emergent scale symmetry in compact star matter via gravitational wave detection

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Topological structure has been extensively studied and confirmed in highly correlated condensed matter physics. We explore the gravitational waves emitted from binary neutron star mergers using the pseudoconformal model for dense nuclear matter for compact stars. This model considers the topology change and the possible emergent scale symmetry and satisfies all the constraints from astrophysics. We find that the location of the topology change affects gravitational waves dramatically owing to its effect on the equation of state. In addition, the effect of this location on the waveforms of the gravitational waves is within the ability of the on-going and up-coming facilities for detecting gravitational waves, thus suggesting a possible way to measure the topology structure in nuclear physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Holt, M. Rho, and W. Weise, Phys. Rep. 621, 2 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T. Takatsuka, Rep. Prog. Phys. 81, 056902 (2018), arXiv: 1707.04966

    Article  ADS  Google Scholar 

  3. G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, and H. Togashi, Astrophys. J. 885, 42 (2019), arXiv: 1903.08963.

    Article  ADS  Google Scholar 

  4. L. McLerran, and S. Reddy, Phys. Rev. Lett. 122, 122701 (2019), arXiv: 1811.12503

    Article  ADS  Google Scholar 

  5. K. S. Jeong, L. McLerran, and S. Sen, Phys. Rev. C 101, 035201 (2020).

    Article  ADS  Google Scholar 

  6. Y. L. Ma, and M. Rho, Prog. Part. Nucl. Phys. 113, 103791 (2020), arXiv: 1909.05889.

    Article  Google Scholar 

  7. W. Weise, JPS Conf. Proc. 26, 011002 (2019)

    Google Scholar 

  8. H. Adhitya, and A. Sulaksono, J. Phys.-Conf. Ser. 1572, 012012 (2020); T. F. Motta, P. A. M. Guichon, and A. W. Thomas, arXiv: 2009.10908.

    Article  Google Scholar 

  9. B. P. Abbott, et al. (LIGO Scientific and VIRGO), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.

    Article  ADS  Google Scholar 

  10. W. G. Paeng, T. T. S. Kuo, H. K. Lee, Y. L. Ma, and M. Rho, Phys. Rev. D 96, 014031 (2017), arXiv: 1704.02775

    Article  ADS  Google Scholar 

  11. Y.-L. Ma, H. K. Lee, W.-G. Paeng, and M. Rho, Sci. China-Phys. Mech. Astron. 62, 112011 (2019)

    Article  ADS  Google Scholar 

  12. Y. L. Ma, and M. Rho, Phys. Rev. D 99, 014034 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. L. Ma, and M. Rho, Phys. Rev. D 100, 114003 (2019), arXiv: 1811.07071.

    Article  ADS  Google Scholar 

  14. Y. L. Ma, and M. Rho, arXiv: 2006.14173.

  15. I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Astrophys. J. 860, 149 (2018), arXiv: 1801.01923.

    Article  ADS  Google Scholar 

  16. Y. L. Ma, and M. Rho, Effective Field Theories for Nuclei and Compact-Star Matter (World Scientific, Singapore, 2018).

    Book  Google Scholar 

  17. Y. L. Ma, and M. Rho, Sci. China-Phys. Mech. Astron. 60, 032001 (2017), arXiv: 1612.06600.

    Article  ADS  Google Scholar 

  18. M. Harada, and K. Yamawaki, Phys. Rep. 381, 1 (2003).

    Article  ADS  Google Scholar 

  19. R. J. Crewther, and L. C. Tunstall, Phys. Rev. D 91, 034016 (2015), arXiv: 1312.3319

    Article  ADS  Google Scholar 

  20. O. Catá, R. J. Crewther, and L. C. Tunstall, Phys. Rev. D 100, 095007 (2019), arXiv: 1803.08513.

    Article  ADS  Google Scholar 

  21. Y. L. Ma, and M. Rho, arXiv: 2009.09219.

  22. G. E. Brown, and M. Rho, Phys. Rev. Lett. 66, 2720 (1991).

    Article  ADS  Google Scholar 

  23. Y. L. Li, Y. L. Ma, and M. Rho, Phys. Rev. C 98, 044318 (2018)

    Article  ADS  Google Scholar 

  24. Y. L. Li, Y. L. Ma, and M. Rho, Chin. Phys. C 42, 094102 (2018), arXiv: 1710.02840.

    Article  ADS  Google Scholar 

  25. Y. L. Ma, and M. Rho, Phys. Rev. Lett. 125, 142501 (2020), arXiv: 2002.03310.

    Article  ADS  Google Scholar 

  26. E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A. Vuorinen, Nat. Phys. 16, 907 (2020), arXiv: 1903.09121.

    Article  Google Scholar 

  27. J. Aasi, et al. (LIGO Scientific), Class. Quantum Grav. 32, 074001 (2015), arXiv: 1411.4547

    Article  ADS  Google Scholar 

  28. F. Acernese, et al. (VIRGO), Class. Quantum Grav. 32, 024001 (2015), arXiv: 1408.3978

    Article  ADS  Google Scholar 

  29. B. P. Abbott, et al. (KAGRA, LIGO Scientific and VIRGO), Liv. Rev. Rel. 21, 3 (2018), arXiv: 1304.0670; Z. Luo, Y. Wang, Y. Wu, W. Hu, and G. Jin, Prog. Theor. Exp. Phys. 116, (2020).

    Article  Google Scholar 

  30. D. Tong, arXiv: 1606.06687.

  31. S. K. Bogner, T. T. S. Kuo, and A. Schwenk, Phys. Rep. 386, 1 (2003), arXiv: nucl-th/0305035.

    Article  ADS  Google Scholar 

  32. C. Y. Tsang, M. B. Tsang, P. Danielewicz, W. G. Lynch, and F. J. Fattoyev, arXiv: 1807.06571.

  33. F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter, G. Allen, M. Campanelli, and P. Laguna, Class. Quantum Grav. 29, 115001 (2012), arXiv: 1111.3344.

    Article  ADS  Google Scholar 

  34. M. Zilhão, and F. Löffler, Int. J. Mod. Phys. A 28, 1340014 (2013), arXiv: 1305.5299.

    Article  ADS  Google Scholar 

  35. E. Schnetter, S. H. Hawley, and I. Hawke, Class. Quantum Grav. 21, 1465 (2004), arXiv: gr-qc/0310042.

    Article  ADS  Google Scholar 

  36. L. Baiotti, I. Hawke, P. J. Montero, F. Löffler, L. Rezzolla, N. Stergioulas, J. A. Font, and E. Seidel, Phys. Rev. D 71, 024035 (2005), arXiv: gr-qc/0403029.

    Article  ADS  Google Scholar 

  37. I. Hawke, F. Löffler, and A. Nerozzi, Phys. Rev. D 71, 104006 (2005), arXiv: gr-qc/0501054.

    Article  ADS  Google Scholar 

  38. P. Mösta, B. C. Mundim, J. A. Faber, R. Haas, S. C. Noble, T. Bode, F. Löffler, C. D. Ott, C. Reisswig, and E. Schnetter, Class. Quantum Grav. 31, 015005 (2014), arXiv: 1304.5544.

    Article  ADS  Google Scholar 

  39. E. Gourgoulhon, P. Grandclément, K. Taniguchi, J. A. Marck, and S. Bonazzola, Phys. Rev. D 63, 064029 (2001), arXiv: gr-qc/0007028.

    Article  ADS  Google Scholar 

  40. J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman, Phys. Rev. D 79, 124032 (2009), arXiv: 0812.2163.

    Article  ADS  Google Scholar 

  41. A. Bauswein, H. T. Janka, and R. Oechslin, Phys. Rev. D 82, 084043 (2010), arXiv: 1006.3315.

    Article  ADS  Google Scholar 

  42. T. W. Baumgarte, and S. L. Shapiro, Phys. Rev. D 59, 024007 (1998), arXiv: gr-qc/9810065.

    Article  ADS  Google Scholar 

  43. T. Nakamura, K. Oohara, and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987).

    Article  ADS  Google Scholar 

  44. P. Colella, and P. R. Woodward, J. Comput. Phys. 54, 174 (1984).

    Article  ADS  Google Scholar 

  45. R. De Pietri, A. Feo, F. Maione, and F. Löffler, Phys. Rev. D 93, 064047 (2016), arXiv: 1509.08804.

    Article  ADS  Google Scholar 

  46. F. Maione, R. D. Pietri, A. Feo, and F. Löffler, Class. Quantum Grav. 33, 175009 (2016), arXiv: 1605.03424.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YongLiang Ma or YueLiang Wu.

Additional information

We thank all contributors of Einstein Toolkit and LORENE code and thank Roberto De Pietri and Parma University gravity group for modifying Einstein Toolkit and developing PyCactus code and making them publicly available. We would like to thank Wei-Tou Ni for the valuable discussions we had. The work of YongLiang Ma was supported by the National Natural Science Foundation of China (Grant Nos. 11875147, and 11475071) and the Intensive Study of Future Space Science Missions of the Strategic Priority Program on Space Science. YueLiang Wu is supported by the National Natural Science Foundation of China (Grant Nos. 11851302, 11851303, 11690022, and 11747601), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23030100), and the CAS Center for Excellence in Particle Physics (CCEPP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Ma, Y. & Wu, Y. Topology change and emergent scale symmetry in compact star matter via gravitational wave detection. Sci. China Phys. Mech. Astron. 64, 252011 (2021). https://doi.org/10.1007/s11433-020-1662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1662-5

Keywords

Navigation