Skip to main content
Log in

Quantum private query: A new kind of practical quantum cryptographic protocol

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This research aims to review the developments in the field of quantum private query (QPQ), a type of practical quantum cryptographic protocol. The primary protocol, as proposed by Jacobi et al., and the improvements in the protocol are introduced. Then, the advancements made in sability, theoretical security, and practical security are summarized. Additionally, we describe two new results concerning QPQ security. We emphasize that a procedure to detect outside adversaries is necessary for QPQ, as well as for other quantum secure computation protocols, and then briefly propose such a strategy. Furthermore, we show that the shift-and-addition or low-shift-and-addition technique can be used to obtain a secure real-world implementation of QPQ, where a weak coherent source is used instead of an ideal single-photon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, J. Comput. Syst. Sci. 60, 592 (2000).

    Article  Google Scholar 

  2. C. H. Bennett, and G. Brassard, in IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York, Bangalore, 1984), p. 175.

    Google Scholar 

  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  4. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).

    Article  ADS  Google Scholar 

  5. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).

    Article  ADS  Google Scholar 

  6. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 044305 (2005).

    Article  ADS  Google Scholar 

  7. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Light Sci. Appl. 5, e16144 (2016), arXiv: 1503.00451.

    Article  Google Scholar 

  8. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.

    Article  ADS  Google Scholar 

  9. F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Sci. Bull. 62, 1519 (2017).

    Article  Google Scholar 

  10. F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120313 (2017).

    Article  ADS  Google Scholar 

  11. S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).

    Article  Google Scholar 

  12. Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).

    Article  Google Scholar 

  13. I. Kerenidis, and R. de Wolf, Inf. Process. Lett. 90, 109 (2004).

    Article  Google Scholar 

  14. Z. Sun, J. Yu, P. Wang, and L. Xu, Phys. Rev. A 91, 052303 (2015).

    Article  ADS  Google Scholar 

  15. C. H. Bennett, G. Brassard, C. Crepeau, and M. H. Skubiszewska, Lect. Notes Comput. Sci. 576, 351 (1992).

    Article  Google Scholar 

  16. H. K. Lo, Phys. Rev. A 56, 1154 (1997).

    Article  ADS  Google Scholar 

  17. V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100, 230502 (2008), arXiv: 0708.2992.

    Article  ADS  MathSciNet  Google Scholar 

  18. V. Giovannetti, S. Lloyd, and L. Maccone, IEEE Trans. Inform. Theor. 56, 3465 (2010).

    Article  Google Scholar 

  19. L. Olejnik, Phys. Rev. A 84, 022313 (2011).

    Article  ADS  Google Scholar 

  20. F. Yu, and D. W. Qiu, Quantum Inf. Comput. 14, 91 (2014).

    MathSciNet  Google Scholar 

  21. F. De Martini, V. Giovannetti, S. Lloyd, L. Maccone, E. Nagali, L. Sansoni, and F. Sciarrino, Phys. Rev. A 80, 010302 (2009).

    Article  Google Scholar 

  22. C. Wang, L. Hao, and L. J. Zhao, Chin. Phys. Lett. 28, 080302 (2011).

    Article  ADS  Google Scholar 

  23. M. Jakobi, C. Simon, N. Gisin, J. D. Bancal, C. Branciard, N. Walenta, and H. Zbinden, Phys. Rev. A 83, 022301 (2011), arXiv: 1002.4360.

    Article  ADS  Google Scholar 

  24. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, Phys. Rev. Lett. 92, 057901 (2004).

    Article  ADS  Google Scholar 

  25. C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  26. Y. Chang, S. Zhang, G. Han, Z. Sheng, L. Yan, and J. Xiong, Entropy 18, 163 (2016).

    Article  ADS  Google Scholar 

  27. Y. G. Yang, S. J. Sun, P. Xu, and J. Tian, Quantum Inf. Process. 13, 805 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Gao, B. Liu, Q. Y. Wen, and H. Chen, Opt. Express 20, 17411 (2012), arXiv: 1111.1511.

    Article  ADS  Google Scholar 

  29. P. Chan, I. Lucio-Martinez, X. Mo, C. Simon, and W. Tittel, Sci. Rep. 4, 5233 (2014), arXiv: 1303.0865.

    Article  ADS  Google Scholar 

  30. M. V. P. Rao, and M. Jakobi, Phys. Rev. A 87, 012331 (2013), arXiv: 1208.2501.

    Article  ADS  Google Scholar 

  31. F. Gao, B. Liu, W. Huang, and Q. Y. Wen, IEEE J. Sel. Top. Quantum Electron. 21, 98 (2015), arXiv: 1406.0589.

    Article  ADS  Google Scholar 

  32. B. Liu, F. Gao, W. Huang, and Q. Y. Wen, Sci. China-Phys. Mech. Astron. 58, 100301 (2015), arXiv: 1511.05267.

    Article  Google Scholar 

  33. C. Y. Wei, X. Q. Cai, B. Liu, T. Y. Wang, and F. Gao, IEEE Trans. Comput. 67, 2 (2018).

    Article  MathSciNet  Google Scholar 

  34. C. Y. Wei, F. Gao, Q. Y. Wen, and T. Y. Wang, Sci. Rep. 4, 7537 (2014).

    Article  Google Scholar 

  35. D. S. Shen, X. C. Zhu, W. P. Ma, X. R. Yin, and M. L. Wang, J. Optoelectron. Adv. Mater. 14, 504 (2012).

    Google Scholar 

  36. F. Gao, S. J. Qin, and Q. Y. Wen, Quantum Inf. Comput. 7, 329 (2007).

    MathSciNet  Google Scholar 

  37. F. Gao, F. Z. Guo, Q. Y. Wen, and F. C. Zhu, Phys. Rev. Lett. 101, 208901 (2008).

    Article  ADS  Google Scholar 

  38. F. Gao, S. J. Qin, F. Z. Guo, and Q. Y. Wen, Phys. Rev. A 84, 022344 (2011), arXiv: 1106.4398.

    Article  ADS  Google Scholar 

  39. S. J. Qin, F. Gao, Q. Y. Wen, and F. C. Zhu, Phys. Rev. A 76, 062324 (2007), arXiv: 0801.2418.

    Article  ADS  Google Scholar 

  40. L. Y. Zhao, Z. Q. Yin, W. Chen, Y. J. Qian, C. M. Zhang, G. C. Guo, and Z. F. Han, Sci. Rep. 7, 39733 (2017).

    Article  ADS  Google Scholar 

  41. H. K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012), arXiv: 1109.1473.

    Article  ADS  Google Scholar 

  42. A. Maitra, G. Paul, and S. Roy, Phys. Rev. A 95, 042344 (2017), arXiv: 1701.01087.

    Article  ADS  Google Scholar 

  43. Y. G. Yang, S. J. Sun, J. Tian, and P. Xu, Optik 125, 5538 (2014).

    Article  ADS  Google Scholar 

  44. Y. G. Yang, M. O. Zhang, and R. Yang, Quantum Inf. Process. 14, 1017 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  45. S. J. Sun, Y. G. Yang, and M. O. Zhang, Quantum Inf. Process. 14, 1443 (2015).

    Article  ADS  Google Scholar 

  46. J. Li, Y. G. Yang, X. B. Chen, Y. H. Zhou, and W. M. Shi, Sci. Rep. 6, 31738 (2016).

    Article  ADS  Google Scholar 

  47. Y. G. Yang, Z. C. Liu, X. B. Chen, W. F. Cao, Y. H. Zhou, and W. M. Shi, Quantum Inf. Process. 15, 3833 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  48. Y. G. Yang, Z. C. Liu, J. Li, X. B. Chen, H. J. Zuo, Y. H. Zhou, and W. M. Shi, Phys. Lett. A 380, 4033 (2016).

    Article  ADS  Google Scholar 

  49. H. Lai, M. A. Orgun, J. Pieprzyk, J. Xiao, L. Xue, and Z. Jia, Phys. Lett. A 379, 2561 (2015).

    Article  ADS  Google Scholar 

  50. W. X. Shi, X. T. Liu, J. Wang, and C. J. Tang, Commun. Theor. Phys. 64, 299 (2015).

    Article  ADS  Google Scholar 

  51. T. Y. Wang, S. Y. Wang, and J. F. Ma, Int. J. Theor. Phys. 55, 3309 (2016).

    Article  Google Scholar 

  52. S. W. Xu, Y. Sun, and S. Lin, Quantum Inf. Process. 15, 3301 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  53. J. L. Zhang, F. Z. Guo, F. Gao, B. Liu, and Q. Y. Wen, Phys. Rev. A 88, 022334 (2013).

    Article  ADS  Google Scholar 

  54. J. Kilian, in Proceedings of the 20th ACM Symposium on Theory of Computing, edited by J. Simon (ACM, New York, Chicago, 1988), p. 20.

  55. F. Gao, Q. Y. Wen, S. J. Qin, and F. C. Zhu, Sci. China Ser. G-Phys. Mech. Astron. 52, 1925 (2009), arXiv: 0810.2859.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiaoYan Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Qin, S., Huang, W. et al. Quantum private query: A new kind of practical quantum cryptographic protocol. Sci. China Phys. Mech. Astron. 62, 70301 (2019). https://doi.org/10.1007/s11433-018-9324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9324-6

Keywords

Navigation