Skip to main content
Log in

Explore the QCD phase transition phenomena from a multiphase transport model

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We study the phase structure of QCD matter in the framework of a multiphase transport model by implementing a strong local parton density fluctuation scenario. Our calculations on the beam energy dependence of net-proton high moment show that local parton density fluctuation only has a small effect. But it becomes important when all baryons are included. We then study the effect on elliptic flow and find that an enhanced local parton density fluctuation leads to a significant effect on protons but a small effect on pions. Our study provides a reference of transport dynamics on QCD phase transition phenomena and will be relevant for the upcoming phase II of the beam energy scan program at RHIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kaczmarek, and F. Zantow, Phys. Rev. D 71, 114510 (2005).

    Article  ADS  Google Scholar 

  2. M. Cheng, N. H. Christ, S. Datta, J. van der Heide, C. Jung, F. Karsch, O. Kaczmarek, E. Laermann, R. D. Mawhinney, C. Miao, P. Petreczky, K. Petrov, C. Schmidt, and T. Umeda, Phys. Rev. D 74, 054507 (2006).

    Article  ADS  Google Scholar 

  3. R. Gupta, arXiv: hep-lat/9807028.

  4. M. M. Aggarwal, et al. (STAR Collaboration), arXiv: 1007.2613.

  5. D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).

    Article  ADS  Google Scholar 

  6. L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. Lett. 110, 142301 (2013), arXiv: 1301.2347.

    Article  ADS  Google Scholar 

  7. L. Adamczyk, et al. STAR Collaboration), (Phys. Rev. Lett. 112, 162301 (2014), arXiv: 1401.3043.

    Article  ADS  Google Scholar 

  8. M. Nahrgang, T. Schuster, M. Mitrovski, R. Stock, and M. Bleicher, Eur. Phys. J. C 72, 2143 (2012), arXiv: 0903.2911.

    Article  ADS  Google Scholar 

  9. A. Bzdak, V. Koch, and V. Skokov, Phys. Rev. C 87, 014901 (2013), arXiv: 1203.4529.

    Article  ADS  Google Scholar 

  10. M. M. Aggarwal, et al. (STAR Collaboration), Phys. Rev. Lett. 105, 022302 (2010), arXiv: 1004.4959.

    Article  ADS  Google Scholar 

  11. L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. Lett. 112, 032302 (2014).

    Article  ADS  Google Scholar 

  12. L. Adamczyk, et al. (STAR Collaboration), Nature 548, 62 (2017), arXiv: 1701.06657.

    Article  ADS  Google Scholar 

  13. L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. Lett. 113, 052302 (2014).

    Article  ADS  Google Scholar 

  14. K. J. Sun, L. W. Chen, C. M. Ko, and Z. B. Xu, Phys. Lett. B 774, 103 (2017), arXiv: 1702.07620.

    Article  ADS  Google Scholar 

  15. K. J. Sun, L. W. Chen, C. M. Ko, J. Pu, and Z. B. Xu, Phys. Lett. B 781, 499 (2018), arXiv: 1801.09382.

    Article  ADS  Google Scholar 

  16. H. Petersen, Nucl. Phys. A 967, 145 (2017), arXiv: 1704.02904.

    Article  ADS  Google Scholar 

  17. X. F. Luo, and N. Xu, Nucl. Sci. Tech. 28, 112 (2017).

    Article  Google Scholar 

  18. C. Zhou, J. Xu, X. F. Luo, and F. Liu, Phys. Rev. C 96, 014909 (2017), arXiv: 1703.09114.

    Article  ADS  Google Scholar 

  19. V. Vovchenko, L. J. Jiang, M. I. Gorenstein, and H. Stoecher, arXiv: 1711.07260.

  20. Z. W. Lin, S. Pal, C. M. Ko, B. A. Li, and B. Zhang, Phys. Rev. C 64, 011902 (2001).

    Article  ADS  Google Scholar 

  21. X. N. Wang, and M. Gyulassy, Phys. Rev. D 44, 3501 (1991).

    Article  ADS  Google Scholar 

  22. B. Zhang, Comput. Phys. Commun. 109, 193 (1998).

    Article  ADS  Google Scholar 

  23. B. A. Li, and C. M. Ko, Phys. Rev. C 52, 2037 (1995).

    Article  ADS  Google Scholar 

  24. X. H. Jin, J. H. Chen, Y. G. Ma, S. Zhang, C. J. Zhang, and C. Zhong, Nucl. Sci. Tech. 29, 54 (2018).

    Article  Google Scholar 

  25. L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. C 96, 044904 (2017).

    Article  ADS  Google Scholar 

  26. X. F. Luo, Phys. Rev. C 91, 034907 (2015), arXiv: 1410.3914.

    Article  ADS  Google Scholar 

  27. Y. F. Lin, L. Z. Chen, and Z. M. Li, Phys. Rev. C 96, 044906 (2017), arXiv: 1707.04375.

    Article  ADS  Google Scholar 

  28. Y. Zhou, S. S. Shi, K. Xiao, K. J. Wu, and F. Liu, Phys. Rev. C 82, 014905 (2010), arXiv: 1004.2558.

    Article  ADS  Google Scholar 

  29. A. Bzdak, and V. Koch, Phys. Rev. C 86, 044904 (2012), arXiv: 1206.4286.

    Article  ADS  Google Scholar 

  30. B. Ling, and M. A. Stephanov, Phys. Rev. C 93, 034915 (2016), arXiv: 1512.09125.

    Article  ADS  Google Scholar 

  31. J. Y. Ollitrault, Nucl. Phys. A 638, 195c (1998).

    Article  ADS  Google Scholar 

  32. U. Heinz, and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013), arXiv: 1301.2826.

    Article  ADS  Google Scholar 

  33. H. C. Song, Y. Zhou, and K. Gajdošová, Nucl. Sci. Tech. 28, 99 (2017).

    Article  Google Scholar 

  34. L. Ma, G. L. Ma, and Y. G. Ma, Phys. Rev. C 89, 044907 (2014), arXiv: 1404.5935.

    Article  ADS  Google Scholar 

  35. H. L. Li, L. He, Z. W. Lin, D. Molnar, F. Q. Wang, and W. Xie, Phys. Rev. C 93, 051901 (2016), arXiv: 1601.05390

    Article  ADS  Google Scholar 

  36. H. L. Li, L. He, Z. W. Lin, D. Molnar, F. Q. Wang, and W. Xie, Phys. Rev. C 96, 014901 (2017), arXiv: 1604.07387.

    Article  ADS  Google Scholar 

  37. Y. C. He, and Z. W. Lin, Phys. Rev. C 96, 014910 (2017), arXiv: 1703.02673.

    Article  ADS  Google Scholar 

  38. Z. W. Lin, arXiv: 1704.08418.

  39. C. J. Zhang, and J. Xu, Phys. Rev. C 96, 044907 (2017), arXiv: 1707.07272.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JinHui Chen or YuGang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Chen, J., Lin, Z. et al. Explore the QCD phase transition phenomena from a multiphase transport model. Sci. China Phys. Mech. Astron. 62, 11012 (2019). https://doi.org/10.1007/s11433-018-9272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9272-4

Keywords

Navigation