Skip to main content
Log in

Coherent state transfer through a multi-channel quantum network: Natural versus controlled evolution passage

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum state transfer (QST) is an important task in quantum information processing. In this study, we describe two approaches for the high-fidelity transfer of a quantum state between two opposite quantum dots attached to a multi-channel quantum network. First, we demonstrate that a high-efficiency QST can be achieved with the coherent time evolution of a quantum system without any external control. Second, we present an approach that uses an alternative mechanism for a high-fidelity QST. By adiabatically varying tunnel couplings, it is possible to implement the complete transmission of a quantum state based on this quantum mechanical mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Bose, Phys. Rev. Lett. 91, 207901 (2003).

    Article  ADS  Google Scholar 

  2. M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  3. M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, and A. J. Landahl, Phys. Rev. A 71, 032312 (2005).

    Article  ADS  Google Scholar 

  4. P. Karbach, and J. Stolze, Phys. Rev. A 72, 030301(R) (2005).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Kay, Phys. Rev. A 73, 032306 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Kay, Int. J. Quantum Inf. 8, 641 (2010).

    Article  Google Scholar 

  7. T. Shi, Y. Li, Z. Song, and C. P. Sun, Phys. Rev. A 71, 032309 (2005).

    Article  ADS  Google Scholar 

  8. Y. Li, T. Shi, B. Chen, Z. Song, and C. P. Sun, Phys. Rev. A 71, 032309 (2005).

    Article  ADS  Google Scholar 

  9. A. Wójcik, T. Luczak, P. Kurzynski, A. Grudka, T. Gdala, and M. Bednarska, Phys. Rev. A 72, 034303 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. X. Huo, Y. Li, Z. Song, and C. P. Sun, Europhys. Lett. 84, 30004 (2008).

    Article  ADS  Google Scholar 

  11. B. Chen, and Z. Song, Sci. China-Phys. Mech. Astron. 53, 1266 (2010).

    Article  ADS  Google Scholar 

  12. N. Y. Yao, L. Jiang, A. V. Gorshkov, Z.-X. Gong, A. Zhai, L.-M. Duan, and M. D. Lukin, Phys. Rev. Lett. 106, 040505 (2011).

    Article  ADS  Google Scholar 

  13. M. Bruderer, K. Franke, S. Ragg, and W. Belzig, Phys. Rev. A 85, 022312 (2012).

    Article  ADS  Google Scholar 

  14. A. Wójcik, T. Luczak, P. Kurzynski, A. Grudka, T. Gdala, and M. Bednarska, Phys. Rev. A 75, 022330 (2007).

    Article  ADS  Google Scholar 

  15. S. Paganelli, S. Lorenzo, T. J. G. Apollaro, F. Plastina, and G. L. Giorgi, Phys. Rev. A 87, 062309 (2013).

    Article  ADS  Google Scholar 

  16. W. Qin, C. Wang, and L. G. Long, Phys. Rev. A 87, 012339 (2013).

    Article  ADS  Google Scholar 

  17. W. Qin, J. L. Li, and L. G. Long, Chin. Phys. B 24, 040305 (2015).

    Article  ADS  Google Scholar 

  18. W. Qin, C. Wang, Y. Cao, and L. G. Long, Phys. Rev. A 89, 062314 (2014).

    Article  ADS  Google Scholar 

  19. Y. Liu, and F. H. Zhang, Sci. China-Phys. Mech. Astron. 58, 070301 (2015).

    Google Scholar 

  20. P. Zhang, B. You, and L. X. Cen, Chin. Sci. Bull. 59, 3841 (2014).

    Article  Google Scholar 

  21. Y. Liu, and D. L. Zhou, Phys. Rev. A 89, 062331 (2014).

    Article  ADS  Google Scholar 

  22. W. Qin, C. Wang, and X. D. Zhang, Phys. Rev. A 91, 042303 (2015).

    Article  ADS  Google Scholar 

  23. L. G. Long, and J. W. Pan, Sci. China-Phys. Mech. Astron. 57, 1209 (2014).

    Article  ADS  Google Scholar 

  24. A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, Phys. Rev. B 70, 235317 (2004).

    Article  ADS  Google Scholar 

  25. K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, Phys. Rev. A 70, 023606 (2004).

    Article  ADS  Google Scholar 

  26. S. Longhi, V. G. Della, M. Ornigotti, and P. Laporta, Phys. Rev. B 76, 201101(R) (2007).

    Article  ADS  Google Scholar 

  27. F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünermann, and S. Longhi, Opt. Lett. 34, 2405 (2009).

    Article  ADS  Google Scholar 

  28. N. V. Vitanov, and B. W. Shore, Phys. Rev. A 73, 053402 (2006).

    Article  ADS  Google Scholar 

  29. K. Eckert, J. Mompart, M. Lewenstein, R. Corbalán, and G. Birkl, Opt. Commun. 264, 264 (2006).

    Article  ADS  Google Scholar 

  30. W. Merkel, H. Mack, M. Freyberger, V. V. Kozlov, W. P. Schleich, and B. W. Shore, Phys. Rev. A 75, 033420 (2007).

    Article  ADS  Google Scholar 

  31. S. McEndoo, S. Croke, J. Brophy, and T. Busch, Phys. Rev. A 81, 043640 (2010).

    Article  ADS  Google Scholar 

  32. L. C. L. Hollenberg, A. D. Greentree, A. G. Fowler, and C. J. Wellard, Phys. Rev. B 74, 045311 (2006).

    Article  ADS  Google Scholar 

  33. E. M. Graefe, H. J. Korsch, and D. Witthaut, Phys. Rev. A 73, 013617 (2006).

    Article  ADS  Google Scholar 

  34. M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, Phys. Rev. A 77, 061602(R) (2008).

    Article  ADS  Google Scholar 

  35. J. Siewert, T. Brandes, and G. Falci, Opt. Commun. 264, 435 (2006).

    Article  ADS  Google Scholar 

  36. L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, Nanotechnology 20, 405402 (2009).

    Article  Google Scholar 

  37. I. Kamleitner, J. Cresser, and J. Twamley, Phys. Rev. A 77, 032331 (2008).

    Article  ADS  Google Scholar 

  38. B. Chen, W. Fan, and Y. Xu, Phys. Rev. A 83, 014301 (2011).

    Article  ADS  Google Scholar 

  39. B. Chen, Q. H. Shen, W. Fan, and Y. Xu, Sci. China-Phys. Mech. Astron. 55, 1635 (2012).

    Article  ADS  Google Scholar 

  40. B. Chen, W. Fan, Y. Xu, Z. Y. Chen, X. L. Feng, and C. H. Oh, Phys. Rev. A 86, 012302 (2012).

    Article  ADS  Google Scholar 

  41. B. Chen, W. Fan, Y. Xu, Y. D. Peng, and H. Y. Zhang, Phys. Rev. A 88, 022323 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Li, Y. Coherent state transfer through a multi-channel quantum network: Natural versus controlled evolution passage. Sci. China Phys. Mech. Astron. 59, 640302 (2016). https://doi.org/10.1007/s11433-016-5791-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-5791-y

Keywords

Navigation