Skip to main content
Log in

Rapidity distribution of protons from the potential version of UrQMD model and the traditional coalescence afterburner

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Rapidity distributions of both E895 proton data at AGS energies and NA49 net proton data at SPS energies can be described reasonably well with a potential version of the UrQMD in which mean-field potentials for both pre-formed hadrons and confined baryons are considered, with the help of a traditional coalescence afterburner in which one parameter set for both relative distance R 0 and relative momentum P 0, (3.8 fm, 0.3 GeV/c), is used. Because of the large cancellation between the expansion in R 0 and the shrinkage in P 0 through the Lorentz transformation, the relativistic effect in clusters has little effect on the rapidity distribution of free (net) protons. Using a Woods-Saxon-like function instead of a pure logarithmic function as seen by FOPI collaboration at SIS energies, one can fit well both the data at SIS energies and the UrQMD calculation results at AGS and SPS energies. Further, it is found that for central Au+Au or Pb+Pb collisions at top SIS, SPS and RHIC energies, the proton fractions in clusters are about 33%, 10%, and 0.7%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Matsui, and H. Satz, Phys. Lett. B 178, 416 (1986).

    Article  ADS  Google Scholar 

  2. S. Soff, S. A. Bass, M. Bleicher, L. Bravina, M. Gorenstein, E. Zabrodin, H. Stoecker, and W. Greiner, Phys. Lett. B 471, 89 (1999).

    Article  ADS  Google Scholar 

  3. J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, and H. Stoecker, Phys. Rev. C 89, 054913 (2014).

    Article  ADS  Google Scholar 

  4. H. Sorge, Phys. Rev. Lett. 82, 2048 (1999).

    Article  ADS  Google Scholar 

  5. G. Torrieri, Phys. Rev. C 76, 024903 (2007).

    Article  ADS  Google Scholar 

  6. J. Steinheimer, V. Koch, and M. Bleicher, Phys. Rev. C 86, 044903 (2012).

    Article  ADS  Google Scholar 

  7. J. Xu, T. Song, C. M. Ko, and F. Li, Phys. Rev. Lett. 112, 012301 (2014).

    Article  ADS  Google Scholar 

  8. D. Adamova, et al. (CERES Collaboration), Phys. Rev. Lett. 90, 022301 (2003).

    Article  ADS  Google Scholar 

  9. Q. Li, M. Bleicher, and H. Stocker, Phys. Lett. B 659, 525 (2008).

    Article  ADS  Google Scholar 

  10. Q. Li, C. Shen, and M. Bleicher, Cent. Eur. J. Phys. 10, 1131 (2012).

    Google Scholar 

  11. L. Adamczyk, et al. (STAR Collaboration), arXiv:1403.4972 [nucl-ex].

  12. S. Feng, and X. Yuan, Sci. China Ser. G-Phys. Mech. Astron. 52, 198 (2009).

    Article  ADS  Google Scholar 

  13. Y. Yuan, Q. Li, Z. Li, and F. H. Liu, Phys. Rev. C 81, 034913 (2010).

    Article  ADS  Google Scholar 

  14. W. Reisdorf, R. Averbecka, M. L. Benabderrahmanef, O. N. Hartmanna, N. Herrmannf, K. D. Hildenbranda, T. I. Kanga, Y. J. Kim, M. Kis, P. Koczona, T. Kressa, Y. Leifelsa, M.Merschmeyerf, K. Piaseckif, l, A. Schüttaufa, M. Stockmeierf, V. Barretd, Z. Basrakm, N. Bastidd, R. Caplarm, P. Crochetd, P. Dupieuxd, M. Dzelalijam, Z. Fodorc, P. Gasikl, Y. Grishking, B. Hong, J. Kecskemetic, M. Kirejczykl, M. Korolijam, and R. Kottee, Nucl. Phys. A 848, 366 (2010).

    Article  ADS  Google Scholar 

  15. H. Kruse, B. V. Jacak, J. J. Molitoris, G. D. Westfall, and H. Stoecker, Phys. Rev. C 31, 1770 (1985).

    Article  ADS  Google Scholar 

  16. Q. Li, Z. Li, S. Soff, M. Bleicher, and H. Stoecker, Phys. Rev. C 72, 034613 (2005)

    Article  ADS  Google Scholar 

  17. Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, and W. Trautmann, Phys. Rev. C 89, 034606 (2014).

    Article  ADS  Google Scholar 

  18. Y. Zhang, Z. Li, C. Zhou, and M. B. Tsang, Phys. Rev. C 85, 051602 (2012).

    Article  ADS  Google Scholar 

  19. W. Neubert, and A. S. Botvina, Eur. Phys. J. A 7, 101 (2000).

    Article  ADS  Google Scholar 

  20. Q. Li, and Z. Li, Mod. Phys. Lett. A 27, 1250004 (2012).

    Article  ADS  Google Scholar 

  21. J. L. Klay, et al. (E895 Collaboration), Phys. Rev. Lett. 88, 102301 (2002).

    Article  ADS  Google Scholar 

  22. C. Blume, et al. (Na49 Collaboration), J. Phys. G. 34, S951 (2007).

    ADS  Google Scholar 

  23. H. Strobele, et al. (NA49 Collaboration), PoS CPOD 2009, 044 (2009).

    Google Scholar 

  24. Q. f. Li, J. Steinheimer, H. Petersen, M. Bleicher, and H. Stocker, Phys. Lett. B 674, 111 (2009).

    Article  ADS  Google Scholar 

  25. K. Abdel-Waged, Phys. Rev. C 70, 014605 (2004).

    Article  ADS  Google Scholar 

  26. J. Steinheimer, and M. Bleicher, arXiv:1503.07305 [nucl-th].

  27. B. Monreal, W. J. Llope, R. Mattiello, S. Y. Panitkin, H. Sorge, and N. Xu, Phys. Rev. C 60, 051902 (1999).

    Article  ADS  Google Scholar 

  28. B. I. Abelev, et al. (STAR Collaboration), arXiv:0909.0566 [nucl-ex].

  29. I. Arsene, et al. (BRAHMS Collaboration), Phys. Rev. C 83, 044906 (2011).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingFeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, Y., Wang, X. et al. Rapidity distribution of protons from the potential version of UrQMD model and the traditional coalescence afterburner. Sci. China Phys. Mech. Astron. 59, 622001 (2016). https://doi.org/10.1007/s11433-015-5768-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5768-2

Keywords

Navigation