Skip to main content
Log in

Triad mode resonant interactions in suspended cables

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equations for cable’s triad resonance are formulated by the multiple scale method. Dynamic conservative quantities, i.e., mode energy and Manley-Rowe relations, are then constructed. Equilibrium/dynamic solutions of the modulation equations are obtained, and full investigations into their stability and bifurcation characteristics are presented. Various bifurcation behaviors are detected in cable’s triad resonant responses, such as saddle-node, Hopf, pitchfork and period-doubling bifurcations. Nonlinear behaviors, like jump and saturation phenomena, are also found in cable’s responses. Based upon the bifurcation analysis, two interesting properties associated with activation of cable’s triad resonance are also proposed, i.e., energy barrier and directional dependence. The first gives the critical amplitude of high-frequency mode to activate cable’s triad resonance, and the second characterizes the degree of difficulty for activating cable’s triad resonance in two opposite directions, i.e., with positive or negative internal detuning parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Rega, Appl. Mech. Rev. 57, 443 (2004).

    Article  ADS  Google Scholar 

  2. D. P. Jin, H. Wen, and H. Y. Hu, Adv. Mech. 34, 304 (2004).

    Google Scholar 

  3. D. P. Jin, and H. Y. Hu, Appl. Math. Mech. 22, 940 (2001).

    Article  MATH  Google Scholar 

  4. Y. Y. Cui, W. Zhang, and M. H. Yang, Mech. Eng. 32, 92 (2010).

    MathSciNet  Google Scholar 

  5. H. M. Irvine, and T. K. Caughey, Proc. Roy. Soc. London A 341, 299 (1974).

    Article  ADS  Google Scholar 

  6. H. M. Irvine, Cable Structures (The MIT Press, Cambridge, 1981).

    Google Scholar 

  7. M. S. Triantafyllou, Shock Vib. Digest. 23, 3 (1991).

    Article  Google Scholar 

  8. P. Hagedon, and B. Schäfer, Int. J. Nonlinear Mech. 15, 333 (1980).

    Article  Google Scholar 

  9. A. Luongo, G. Rega, and F. Vestroni, Int. J. Nonlinear Mech. 19, 39 (1984).

    Article  MATH  Google Scholar 

  10. F. Benedettini, and G. Rega, Int. J. Nonlinear Mech. 22, 497 (1987).

    Article  MATH  Google Scholar 

  11. F. Benedettini, G. Rega, and F. Vestroni, Meccanica 21, 38 (1986).

    Article  MATH  Google Scholar 

  12. G. V. Rao, and R. N. Iyengar, J. Sound Vib. 149, 25 (1991).

    Article  ADS  Google Scholar 

  13. N. C. Perkins, Int. J. Nonlinear Mech. 27, 233 (1992).

    Article  ADS  MATH  Google Scholar 

  14. C. L. Lee, and N. C. Perkins, Nonlinear Dyn. 3, 465 (1993).

    Google Scholar 

  15. N. Srinil, G. Rega, and S. Chucheepsakul, Nonlinear Dyn. 48, 231 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Pakdemirli, S. A. Nayfeh, and A. H. Nayfeh, Nonlinear Dyn. 8, 65 (1995).

    Article  MathSciNet  Google Scholar 

  17. Y. Y. Zhao, L. H. Wang, D. L. Chen, and L. Z. Jiang, J. Sound Vib. 255, 43 (2002).

    Article  ADS  Google Scholar 

  18. W. Lacarbonara, G. Rega, and A. H. Nayfeh, Int. J. Nonlinear Mech. 38, 851 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Lacarbonara, and G. Rega, Int. J. Nonlinear Mech. 38, 873 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Y. Zhao, and L. H. Wang, J. Sound Vib. 294, 1073 (2006).

    Article  ADS  Google Scholar 

  21. L. H. Wang, and Y. Y. Zhao, Int. J. Solids Struct. 43, 7800 (2006).

    Article  MATH  Google Scholar 

  22. H. J. Kang, Y. Y. Zhao, and H. P. Zhu, J. Vib. Control 2014, doi: 10.1177/1077546313499390

    Google Scholar 

  23. A. H. Nayfeh, Non-linear Interactions (Wiley-Inter Science, New York, 2000).

    Google Scholar 

  24. F. Benedettini, G. Rega, and R. Alaggio, J. Sound Vib. 182, 775 (1995).

    Article  ADS  Google Scholar 

  25. G. Rega, W. Lacarbonara, A. H. Nayfeh, and C. M. Chin, Int. J. Nonlinear Mech. 34, 901 (1999).

    Article  Google Scholar 

  26. A. H. Nayfeh, A. H. Arafat, C. M. Chin, and W. Lacarbonara, J. Vib. Control 8, 337 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  27. C. L. Lee, and N. C. Perkins, Nonlinear Dyn. 8, 45 (1995).

    MathSciNet  Google Scholar 

  28. L. H. Wang, and Y. Y. Zhao, J. Sound Vib. 319, 1 (2009).

    Article  ADS  Google Scholar 

  29. A. H. Nayfeh, Nonlinear Oscillation (John Wiley and Sons, New York, 1979).

    Google Scholar 

  30. D. A. Kovriguine, A. I. Potapov, and N. Novgorod, Acta Mech. 126, 189 (1998).

    Article  MATH  Google Scholar 

  31. J. M. Manley, and H. E. Rowe, Proceedings of the IRE (IEEE, New York, 1956), pp. 904–913.

    Google Scholar 

  32. O. M. Phillips, J. Fluid Mech. 106, 215 (1981).

    Article  ADS  MATH  Google Scholar 

  33. A. D. D. Craik, Wave Interactions and Fluid Flows (Cambridge University Press, Cambridge, 1985).

    MATH  Google Scholar 

  34. A. H. Nayfeh, and B. Balachandran, Applied Nonlinear Dynamics (Wiley, New York, 1994).

    Google Scholar 

  35. H. Y. Hu, Applied Nonlinear Dynamics (in Chinese) (Aerospace Press, Beijing, 2000).

    Google Scholar 

  36. B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPP-AUTO for Researchers and Students (Society for Industrial and Applied Mathematics, Philadelphia, 2002).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TieDing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Kang, H., Wang, L. et al. Triad mode resonant interactions in suspended cables. Sci. China Phys. Mech. Astron. 59, 634501 (2016). https://doi.org/10.1007/s11433-015-5766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5766-4

Keywords

Navigation