Skip to main content
Log in

Can FSRQs produce the IceCube detected diffuse neutrino emission?

  • Article
  • Astrophysics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

IceCube has reported the detection of a diffuse TeV-PeV neutrino emission, for which the flat spectrum radio quasars (FSRQs) have been proposed to be the candidate sources. Here we assume that the neutrino flux from FSRQs is proportional to their gamma-ray ones, and obtain the gamma-ray/neutrino flux ratio by the diffuse gamma-ray flux from Fermi-LAT measurement of FSRQs and the diffuse neutrino flux detected by IceCube. We apply this ratio to individual FSRQs and hence predict their neutrino flux. We find that a large fraction of candidate FSRQs from the northern sky in the IceCube point source search has predicted neutrino flux above the IceCube upper limit; and for the sample of stacking search for neutrinos by IceCube, the predicted stacked flux is even larger than the upper limit of stacked flux by orders of magnitude. Therefore the IceCube limit from stacking searches, combined with the Fermi-LAT observations, already rejects FSRQs as the main sources of IceCube-detected diffuse neutrinos: FSRQs can only account for ≲ 10% (≲ 4%) of the IceCube-detected diffuse neutrino flux, according to the stacking searches from the whole (northern) sky. The derived small neutrino/gamma-ray flux ratio also implies that the gamma-ray emission from FSRQs cannot be produced by the secondary leptons and photons from the pion production processes. The caveat in the assumptions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I C Collaboration, Phys. Rev. Lett. 111, 021103 (2013).

    Article  Google Scholar 

  2. I C Collaboration, Phys. Rev. Lett. 113, 101101 (2014).

    Article  ADS  Google Scholar 

  3. Ice Cube Collaboration, Science 342, 6161 (2013).

    Article  Google Scholar 

  4. M. Ahlers, and K. Murase, Phys. Rev. D 90, 023010 (2014).

    Article  ADS  Google Scholar 

  5. Y. Q. Guo, H. B. Hu, Q. Yuan, Z. Tian, and X. J. Gao, arXiv:1312.7616.

  6. N. Gupta, arXiv:1305.4123.

  7. J. C. Joshi, W. Winter, and N. Gupta, Mon. Not. R. Astron. Soc. 439, 3414 (2014).

    Article  ADS  Google Scholar 

  8. C. Lunardini, S. Razzaque, K. T. Theodoseau, and L. Yang, arXiv:1311.7188.

  9. A. Neronov, D. V. Semikoz, and C. Tchernin, arXiv:1307.2158.

  10. S. Razzaque, arXiv:1310.5123.

  11. A. M. Taylor, S. Gabici, and F. Aharonian, arXiv:1403.3206.

  12. I. Cholis, and D. Hooper, J. Cosmol. Astropart. Phys. 6, 030 (2013).

    Article  ADS  Google Scholar 

  13. R. Y. Liu, and X. Y. Wang, Astrophys. J. 766, 73 (2013).

    Article  ADS  Google Scholar 

  14. K. Murase, and K. Ioka, Phys. Rev. Lett. 111, 121102 (2013).

    Article  ADS  Google Scholar 

  15. E. Waxman, and J. Bahcall, Phys. Rev. Lett. 78, 2292 (1997).

    Article  ADS  Google Scholar 

  16. C. D. Dermer, K. Murase, and Y. Inoue, arXiv:1406.2633. 17 A. Mücke, R. J. Protheroe, R. Engel, J. P. Rachen, and T. Stanev, Astropart Phys. 18, 593 (2003).

    Article  ADS  Google Scholar 

  17. K. Murase, Y. Inoue, and C. D. Dermer, arXiv:1403.4089.

  18. P. Padovani, and E. Resconi, Mon. Not. R. Astron. Soc. 443, 474 (2014).

    Article  ADS  Google Scholar 

  19. F. W. Stecker, Phys. Rev. D 88, 047301 (2013).

    Article  ADS  Google Scholar 

  20. L. A. Anchordoqui, H. Goldberg, M. H. Lynch, A. V. Olinto, T. C. Paul, and T. J. Weiler, Phys. Rev. D 89, 083003 (2014).

    Article  ADS  Google Scholar 

  21. H. N. He, T. Wang, Y. Z. Fan, S. M. Liu, and D. M. Wei, Phys. Rev. D 87, 063011 (2013).

    Article  ADS  Google Scholar 

  22. R. Y. Liu, X. Y. Wang, S. Inoue, R. Crocker, and F. Aharonian, arXiv:1310.1263 (2013).

    Google Scholar 

  23. K. Murase, M. Ahlers, and B. C. Lacki, Phys. Rev. D 88, 121301 (2013).

    Article  ADS  Google Scholar 

  24. I. Tamborra, S. Ando, and K. Murase, J. Cosmol. Astropart. Phys. 9, 43 (2014).

    Article  ADS  Google Scholar 

  25. A. Loeb, and E. Waxman, J. Cosmol. Astropart. Phys. 5, 3 (2006).

    Article  ADS  Google Scholar 

  26. B. Wang, X. H. Zhao, and Z. Li, J. Cosmol. Astropart. Phys. 11, 028 (2014).

    Article  ADS  Google Scholar 

  27. O. E. Kalashev, A. Kusenko, and W. Essey, Phys. Rev. Lett. 111, 041103 (2013).

    Article  ADS  Google Scholar 

  28. R. Laha, J. F. Beacom, B. Dasgupta, S. Horiuchi, and K. Murase, Phys. Rev. D 88, 043009 (2013).

    Article  ADS  Google Scholar 

  29. E. Roulet, G. Sigl, A. van Vliet, and S. Mollerach, J. Cosmol. Astropart. Phys. 1301, 028 (2013).

    Article  ADS  Google Scholar 

  30. M. Ajello, M. S. Shaw, R. W. Romani, C. D. Dermer, L. Costamante, O. G. King, W. Max-Moerbeck, A. Readhead, A. Reimer, J. L. Richards, and M. Stevenson, Astrophys. J. 751, 108 (2012).

    Article  ADS  Google Scholar 

  31. M. Böttcher, A. Reimer, K. Sweeney, and A. Prakash, Astrophys. J. 768, 54 (2013).

    Article  ADS  Google Scholar 

  32. I C Collaboration, Astrophys. J. 796, 109 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Additional information

Recommended by LiXin Li (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Li, Z. Can FSRQs produce the IceCube detected diffuse neutrino emission?. Sci. China Phys. Mech. Astron. 59, 619502 (2016). https://doi.org/10.1007/s11433-015-5759-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5759-3

Keywords

Navigation