Skip to main content
Log in

Total energy equation leading to exchange-correlation functional

  • Article
  • Solid Mechanics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

By solving the total energy equation, we obtain the formula of exchange-correlation functional for the first time. This functional is usually determined by fitting experimental data or the numerical results of models. In the uniform electron gas limit, our exchange-correlation functional can exactly reproduce the results of Perdew-Zunger parameterization from the jellium model. By making use of a particular solution, our exchange-correlation functional could take into account the case of non-uniform electron density, and its validity can be confirmed through comparisons of the band structure, equilibrium lattice constant, and bulk modulus of aluminum and silicon. The absence of mechanical prescriptions for the systematic improvement of exchange-correlation functional hinders further development of density-functional theory (DFT), and the formula of exchange-correlation functional given in this study might provide a new perspective to help DFT out of this awkward situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136: B864–B871

    Article  ADS  MathSciNet  Google Scholar 

  2. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: A1133–A1138

    Article  ADS  MathSciNet  Google Scholar 

  3. Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B, 1986, 33: 8822–8824

    Article  ADS  Google Scholar 

  4. Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098–3100

    Article  ADS  Google Scholar 

  5. Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–798

    Article  ADS  Google Scholar 

  6. Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244–13249

    Article  ADS  Google Scholar 

  7. Becke A D. A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys, 1993, 98: 1372–1377

    Article  ADS  Google Scholar 

  8. Gill P. A new gradient-corrected exchange functional. Molecular Phys, 1996, 89: 433–445

    Article  ADS  Google Scholar 

  9. Becke A D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys, 1996, 104: 1040–1046

    Article  ADS  Google Scholar 

  10. Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B, 1996, 54: 16533–16539

    Article  ADS  Google Scholar 

  11. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  ADS  Google Scholar 

  12. Becke A D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys, 1997, 107: 8554–8560

    Article  ADS  Google Scholar 

  13. Becke A D. A new inhomogeneity parameter in density-functional theory. J Chem Phys, 1998, 109: 2092–2098

    Article  ADS  Google Scholar 

  14. Becke A D. Simulation of delocalized exchange by local density functionals. J Chem Phys, 2000, 112: 4020–4026

    Article  ADS  Google Scholar 

  15. Tao J, Perdew J P, Staroverov V N, et al. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett, 2003, 91: 146401

    Article  ADS  Google Scholar 

  16. Becke A D. Real-space post-Hartree-Fock correlation models. J Chem Phys, 2005, 122: 064101

    Article  ADS  Google Scholar 

  17. Perdew J P, Schmidt K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. In: Doren V V, Alsenoy C V, Geerlings P, eds. Density Functional Theory and Its Application to Materials. Antwerp (Belgium): AIP Conference Proceedings, 2001. 1–20

    Google Scholar 

  18. Dykstra C, Frenking G, Kim K, et al. Theory and Application of Computational Chemistry: The First 40 Years. Amsterdam, the Netherlands: Elsevier, 2011. 669–724

    Google Scholar 

  19. Oliver G L, Perdew J P. Spin-density gradient expansion for the kinetic energy. Phys Rev A, 1979, 20: 397–403

    Article  ADS  Google Scholar 

  20. Levy M, Perdew J P. Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys Rev A, 1985, 32: 2010–2021

    Article  ADS  Google Scholar 

  21. Lieb E H, Oxford S. Improved lower bound on the indirect Coulomb energy. Int J Quantum Chem, 1981, 19: 427–439

    Article  Google Scholar 

  22. Antoniewicz P R, Kleinman L. Kohn-Sham exchange potential exact to first order in ρ(K→)/ρ0. Phys Rev B, 1985, 31: 6779–6781

    Article  ADS  Google Scholar 

  23. Pan X Y, Sahni V. Criticality of the electron-nucleus cusp condition to local effective potential-energy theories. Phys Rev A, 2003, 67: 012501

    Article  ADS  Google Scholar 

  24. Levy M. Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole. Phys Rev A, 1991, 43: 4637–4646

    Article  ADS  Google Scholar 

  25. Levy M, Ou-Yang H. Nonuniform coordinate scaling requirements for exchange-correlation energy. Phys Rev A, 1990, 42: 651–652

    Article  ADS  Google Scholar 

  26. Pollack L, Perdew J P. Evaluating density functional performance for the quasi-two-dimensional electron gas. J Phys-Condensed Matter, 2000, 12: 1239–1252

    Article  ADS  Google Scholar 

  27. Gori-Giorgi P, Perdew J P. Pair distribution function of the spinpolarized electron gas: A first-principles analytic model for all uniform densities. Phys Rev B, 2002, 66: 165118

    Article  ADS  Google Scholar 

  28. Perdew J P, Ruzsinszky A, Tao J, et al. Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. J Chem Phys, 2005, 123: 062201

    Article  ADS  Google Scholar 

  29. Ceperley DM, Alder B J. Ground state of the electron gas by a stochastic method. Phys Rev Lett, 1980, 45: 566–569

    Article  ADS  Google Scholar 

  30. Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B, 1981, 23: 5048–5079.

    Article  ADS  Google Scholar 

  31. Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671–6687

    Article  ADS  Google Scholar 

  32. Perdew J P, Chevary J A, Vosko S H, et al. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1993, 48: 4978–4978

    Article  ADS  Google Scholar 

  33. Perdew J P, Ruzsinszky A, Csonka G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett, 2008, 100: 136406

    Article  ADS  Google Scholar 

  34. Murnaghan F. The compressibility of media under extreme pressures. Proc Natl Acad Sci USA, 1944, 30: 244–247

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Gaudoin R, Foulkes W M C. Ab initio calculations of bulk moduli and comparison with experiment. Phys Rev B, 2002, 66: 052104

    Article  ADS  Google Scholar 

  36. Beckstein O, Klepeis J, Hart G, et al. First-principles elastic constants and electronic structure of α-Pt2Si and PtSi. Phys Rev B, 2001, 63: 134112

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Chiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, TC. Total energy equation leading to exchange-correlation functional. Sci. China Phys. Mech. Astron. 58, 1–6 (2015). https://doi.org/10.1007/s11433-014-5639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5639-2

Keywords

Navigation