Skip to main content
Log in

Recent advances on “ordered water monolayer that does not completely wet water” at room temperature

  • Review
  • Special Topic: Water Science
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The molecular scales behavior of interfacial water at the solid/liquid interfaces is of a fundamental significance in a diverse set of technical and scientific contexts, ranging from the efficiency of oil mining to the activity of biological molecules. Recently, it has become recognized that, both the physical interactions and the surface morphology have significant impact on the behavior of interfacial water, including the water structures as well as the wetting properties of the surface. In this review, we summarize some of recent advances in the atom-level pictures of the interfacial water, which exhibits the ordered character on various solid surfaces at room or cryogenic temperature. Special focus has been devoted to the wetting phenomenon of “ordered water monolayer that does not completely wet water” and the underlying mechanism on model and some real solid surfaces at room temperature. The possible applications of this phenomenon are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437: 640–647

    Article  ADS  Google Scholar 

  2. Lum K, Chandler D, Weeks J D. Hydrophobicity at small and large length scales. J Phys Chem B, 1999, 103: 4570–4577

    Article  Google Scholar 

  3. Maibaum L, Dinner A R, Chandler D. Micelle formation and the hydrophobic effect. J Phys Chem B, 2004, 108: 6778–6781

    Article  Google Scholar 

  4. Pan A, Naskar B, Prameela G K S, et al. Amphiphile behavior in mixed solvent media I: Self-aggregation and ion association of sodium dodecylsulfate in 1,4-dioxane-water and methanol-water media. Langmuir, 2012, 28: 13830–13843

    Article  Google Scholar 

  5. Patra N, Král P. Controlled self-assembly of filled micelles on nanotubes. J Am Chem Soc, 2011, 133: 6146–6149

    Article  Google Scholar 

  6. Prestipino S, Laio A, Tosatti E. Systematic improvement of classical nucleation theory. Phys Rev Lett, 2012, 108: 225701

    Article  ADS  Google Scholar 

  7. Meng S, Xu L F, Wang E G, et al. Vibrational recognition of hydrogen-bonded water networks on a metal surface. Phys Rev Lett, 2002, 89: 176104

    Article  ADS  Google Scholar 

  8. Ogasawara H, Brena B, Nordlund D, et al. Structure and bonding of water on Pt (111). Phys Rev Lett, 2002, 89: 276102

    Article  ADS  Google Scholar 

  9. Andersson K, Nikitin A, Pettersson L G M, et al. Water dissociation on Ru (001): An activated process. Phys Rev Lett, 2004, 93: 196101

    Article  ADS  Google Scholar 

  10. Yang J J, Meng S, Xu L F, et al. Water adsorption on hydroxylated silica surfaces studied using the density functional theory. Phys Rev B, 2005, 71: 035413

    Article  ADS  Google Scholar 

  11. Michaelides A, Morgenstern K. Ice nanoclusters at hydrophobic metal surfaces. Nat Mater, 2007, 6: 597–601

    Article  Google Scholar 

  12. Hu X L, Michaelides A. Water on the hydroxylated (001) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer. Surf Sci, 2008, 602: 960–974

    Article  ADS  Google Scholar 

  13. Limmer D T, Willard A P, Madden P, et al. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. Proc Natl Acad Sci, 2013, 110: 4200–4205

    Article  ADS  Google Scholar 

  14. Willard A P, Limmer D T, Madden P A, et al. Characterizing heterogeneous dynamics at hydrated electrode surfaces. J Chem Phys, 2013, 138: 184702

    Article  ADS  Google Scholar 

  15. Blunt M O, Adisoejoso J, Tahara K, et al. Temperature-induced structural phase transitions in a two-dimensional self-assembled network. J Am Chem Soc, 2013, 135: 12068–12075

    Article  Google Scholar 

  16. Palmer B J, Liu J. Simulations of micelle self-assembly in surfactant solutions. Langmuir, 1996, 12: 746–753

    Article  Google Scholar 

  17. Brocos P, Mendoza-Espinosa P, Castillo R, et al. Multiscale molecular dynamics simulations of micelles: Coarse-grain for self-assembly and atomic resolution for finer details. Soft Matter, 2012, 8: 9005–9014

    Article  ADS  Google Scholar 

  18. Keller A, Fritzsche M, Yu Y P, et al. Influence of hydrophobicity on the surface-catalyzed assembly of the islet Amyloid polypeptide. ACS Nano, 2011, 4: 2770–2778

    Article  Google Scholar 

  19. Zhang F, Du H N, Zhang Z X, et al. Epitaxial growth of peptide nanofilaments on inorganic surfaces: Effects of interfacial hydrophobicity/hydrophilicity. Angew Chem Int Ed, 2006, 45: 3611–3613

    Article  MathSciNet  Google Scholar 

  20. Alexiadis A, Kassinos S. Molecular simulation of water in carbon nanotubes. Chem Rev, 2008, 108: 5014–5034

    Article  Google Scholar 

  21. Berne B J, Weeks J D, Zhou R H. Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem, 2009, 60: 85–103

    Article  ADS  Google Scholar 

  22. Giovambattista N, Rossky P J, Debenedetti P G. Computational studies of pressure, temperature, and surface effects on the structure and thermodynamics of confined water. Annu Rev Phys Chem, 2012, 63: 179–200

    Article  ADS  Google Scholar 

  23. Rasaiah J C, Garde S, Hummer G. Water in nonpolar confinement: From nanotubes to proteins and beyond. Annu Rev Phys Chem, 2008, 59: 713–740

    Article  ADS  Google Scholar 

  24. Koishi T, Yasuoka K, Fujikawa S, et al. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc Natl Acad Sci, 2009, 106: 8435–8440

    Article  ADS  Google Scholar 

  25. Wan R, Li J, Lu H, et al. Controllable water channel gating of nanometer dimensions. J Am Chem Soc, 2005, 127: 7166–7170

    Article  Google Scholar 

  26. Wang C L, Zhou B, Tu Y S, et al. Critical dipole length for the wetting transition due to collective water-dipoles interactions. Sci Rep, 2012, 2: 358

    ADS  Google Scholar 

  27. Duan M, Song B, Shi G, et al. Cation⊗3π: Cooperative interaction of a cation and three Benzenes with an anomalous order in binding energy. J Am Chem Soc, 2012, 134: 12104–12109

    Article  Google Scholar 

  28. Koishi T, Yasuoka K, Fujikawa S, et al. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: A molecular dynamics simulation study. ACS Nano, 2011, 5: 6834–6842

    Article  Google Scholar 

  29. Zaera F. Probing liquid/solid interfaces at the molecular level. Chem Rev, 2012, 112: 2920–2986

    Article  Google Scholar 

  30. Shen Y R. Phase-sensitive sum-frequency spectroscopy. Annu Rev Phys Chem, 2013, 64: 129–150

    Article  ADS  Google Scholar 

  31. Kimmel G A, Petrik N G, Dohnalek Z, et al. Crystalline ice growth on Pt (111): Observation of a hydrophobic water monolayer. Phys Rev Lett, 2005, 95: 166102

    Article  ADS  Google Scholar 

  32. Meng S, Wang E G, Gao S. Water adsorption on metal surfaces: A general picture from density functional theory studies. Phys Rev B, 2004, 69: 195404

    Article  ADS  Google Scholar 

  33. Michaelides A, Alavi A, King D A. Insight into H2O-ice adsorption and dissociation on metal surfaces from first-principles simulations. Phys Rev B, 2004, 69: 113404

    Article  ADS  Google Scholar 

  34. Cheng L, Fenter P, Nagy K L, et al. Molecular-scale density oscillations in water adjacent to a mica surface. Phys Rev Lett, 2001, 87: 156103

    Article  ADS  Google Scholar 

  35. Hu J, Xiao X D, Ogletree D F, et al. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science, 1995, 268: 267–269

    Article  ADS  Google Scholar 

  36. Lützenkirchen J, Zimmermann R, Preocanin T, et al. An attempt to explain bimodal behaviour of the sapphire c-plane electrolyte interface. Adv Colloid Interface Sci, 2010, 157: 61–74

    Article  Google Scholar 

  37. Miranda P B, Xu L, Shen Y R, et al. Icelike water monolayer adsorbed on mica at room temperature. Phys Rev Lett, 1998, 81: 5876

    Article  ADS  Google Scholar 

  38. Odelius M, Bernasconi M, Parrinello M. Two dimensional ice adsorbed on mica surface. Phys Rev Lett, 1997, 78: 2855

    Article  ADS  Google Scholar 

  39. Rotenberg B, Patel A J, Chandler D. Molecular explanation for why Talc surfaces can be both hydrophilic and hydrophobic. J Am Chem Soc, 2011, 133: 20521–20527

    Article  Google Scholar 

  40. Spagnoli C, Loos K, Ulman A, et al. Imaging structured water and bound polysaccharide on mica surface at ambient temperature. J Am Chem Soc, 2003, 125: 7124–7128

    Article  Google Scholar 

  41. Wang C L, Zhou B, Xiu P, et al. Effect of surface morphology on the ordered water layer at room temperature. J Phys Chem C, 2011, 115: 3018–3024

    Article  Google Scholar 

  42. Wang C L, Lu H J, Wang Z G, et al. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys Rev Lett, 2009, 103: 137801

    Article  ADS  Google Scholar 

  43. Xu D, Liechti K M, Ravi-Chandar K. Mechanical probing of icelike water monolayers. Langmuir, 2009, 25: 12870–12873

    Article  Google Scholar 

  44. Xu K, Cao P G, Heath J R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science, 2010, 329: 1188–1191

    Article  ADS  Google Scholar 

  45. Wang J, Kalinichev A G, Kirkpatrick R J, et al. Structure, energetics, and dynamics of water adsorbed on the muscovite (001) surface: A molecular dynamics simulation. J Phys Chem B, 2005, 109: 15893–15905

    Article  Google Scholar 

  46. Park S H, Sposito G. Structure of water adsorbed on a mica surface. Phys Rev Lett, 2002, 89, 085501

    Article  ADS  Google Scholar 

  47. Zhu C, Li H, Huang Y, et al. Microscopic insight into surface wetting: Relations between interfacial water structure and the underlying lattice constant. Phys Rev Lett, 2013, 110: 126101

    Article  ADS  Google Scholar 

  48. Phan A, Ho T A, Cole D R, et al. Molecular structure and dynamics in thin water films at metal oxide surfaces: Magnesium, aluminum, and silicon oxide surfaces. J Phys Chem C, 2012, 116: 15962–15973

    Article  Google Scholar 

  49. Jung Y, Marcus R A. On the theory of organic catalysis “on water”. J Am Chem Soc, 2007, 129: 5492–5502

    Article  Google Scholar 

  50. Buch V, Milet A, Vácha R, et al. Water surface is acidic. Proc Natl Acad Sci, 2007, 104: 7342–7347

    Article  ADS  Google Scholar 

  51. James M, Ciampi S, Darwish T A, et al. Nanoscale water condensation on click-functionalized self-assembled monolayers. Langmuir, 2011, 27: 10753–10762

    Article  Google Scholar 

  52. James M, Darwish T A, Ciampi S, et al. Nanoscale condensation of water on self-assembled monolayers. Soft Matter, 2011, 7: 5309–5318

    Article  ADS  Google Scholar 

  53. Cheh J, Gao Y, Wang C, et al. Ice or water: Thermal properties of monolayer water adsorbed on a substrate. J Stat Mech-Theory Exp, 2013, 6: P06009

    Google Scholar 

  54. Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys, 1997, 106: 6082

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiPing Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Yang, Y. & Fang, H. Recent advances on “ordered water monolayer that does not completely wet water” at room temperature. Sci. China Phys. Mech. Astron. 57, 802–809 (2014). https://doi.org/10.1007/s11433-014-5415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5415-3

Keywords

Navigation